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Abstract. 3D skeleton data has been widely used in action recognition as the skeleton-based method has achieved good perfor-
mance in complex dynamic environments. The rise of spatio-temporal graph convolutions has attracted much attention to use
graph convolution to extract spatial and temporal features together in the field of skeleton-based action recognition. However, due
to the huge difference in the focus of spatial and temporal features, it is difficult to improve the efficiency of extracting the spa-
tiotemporal features. In this paper, we propose a channel attention and multi-scale neural network (CA-MSN) for skeleton-based
action recognition with a series of spatio-temporal extraction modules. We exploit the relationship of body joints hierarchically
through two modules, i.e., a spatial module which uses the residual GCN network with the channel attention block to extract
the high-level spatial features, and a temporal module which uses the multi-scale TCN network to extract the temporal features
at different scales. We perform extensive experiments on both the NTU-RGBD60 and NTU-RGBD120 datasets to verify the
effectiveness of our network. The comparison results show that our method achieves the state-of-the-art performance with the
competitive computing speed. In order to test the application effect of our CA-MSN model, we design a multi-task tandem net-
work consisting of 2D pose estimation, 2D to 3D pose regression and skeleton action recognition model. The end-to-end (RGB
video-to-action type) recognition effect is demonstrated. The code is available at https://github.com/Rh-Dang/CA-MSN-action-
recognition.git.
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1. Introduction

Human action recognition is an important research direction in the field of computer vision. It has wide application
scenarios and market value, such as abnormal behavior monitoring [1-3], human-computer interaction [4], etc.
In particular, skeleton-based human action recognition methods combined with depth estimation technology [5,
6] have attracted increasing attention from researchers. A skeleton sequence is a kind of abstract human body
movement data, which uses joint types, 3D joint coordinates and joint connections to express the movement of
various body parts. Compared to RGB videos, skeleton data also has the following advantages. First, the cost of
obtaining human skeleton data has become lower with the development of pose estimation technology and depth
cameras. Second, the skeleton data can reduce the overfitting problem in network training and the network’s coupling
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Fig. 1. The characteristics of the CA-MSN skeleton action recognition model: (1) Using channel attention GCN to extract joint relationships. The
intensity of the color indicates the channel importance; (2) Using multi-scale TCN to model time series.

to subjects’ appearances. Third, the skeleton sequence can more intuitively show the movement of various body
parts by using the graph topology representation for joints. Fourth, the skeleton data eliminates environmental noise
(e.g., background, clothing, brightness) so that neural networks can focus more on modeling human movements and
reduce the cost of feature extraction. Furthermore, skeleton-based action recognition can be used as a supplement to
RGB-based action recognition, thereby increasing the information richness and improving the overall recognition
accuracy. In this work, we focus on skeleton-based action recognition.

There are three basic directions for performing skeleton-based action recognition: based on Recurrent Neural
Networks (RNN) [7-14], based on Convolutional Neural Networks (CNN) [15-21], based on Graph Convolutional
Networks (GCN) [22-38], and based on two of the above methods [39-47]. RNN-based approaches mainly use
models such as LSTM/GRU to model the dynamic changes of the skeleton sequence. However, RNN methods only
arrange the joint coordinates into a vector in a certain order and then input it into the recurrent neural network.
The important structural information is ignored since the different joint types and connections are not distinguished.
CNN-based approaches organize the joint coordinates to a 2D map. The 3D coordinates (x, y, z) are analogous
to the three channels (R, G, B) in an image, and the number of frames and joints are analogous to the image
length and width. Therefore, the 2D CNN can be used to extract the spatio-temporal combined features from the
skeleton. With such a data organization as input, it is difficult to express the topological structure and connection
relationship between joints. In recent years, with the rise of graph neural networks, people have gradually discovered
the importance and potential of the graph-structured data. GCN-based approaches fully utilize the spatial structured
information of the skeleton joints. Further, some methods go beyond the natural skeleton connection and model the
implicit connection between joints. Yan et al. [22] first apply GCNs to model skeleton data. They add temporal edges
between corresponding joints in consecutive frames and propose a distance-based sampling function to construct
a graph convolutional layer. However, recent studies have found that networks which extract spatial and temporal
information independently such as SGN [47] DGNN [29] MS-G3D [45], etc. perform better than ST-GCN [22]
and 2s-AGCN [28], etc. which use GCN to directly learn spatio-temporal feature representations. Inspired by their
works, we utilize GCN and muti-scale TCN to extract spatial and temporal features, respectively, and concatenate
the both to use.

Many recent studies have focused on exploring the implicit connection between distant joints, such as the rela-
tionship between arm swing and foot swing when walking. The two-stream adaptive graph convolution network
(2s-AGCN) [28] and actional-structural graph convolution network (AS-GCN) [27] invented the adaptive graph
structure. In this structure, the adjacency matrix is not limited to natural bone connections but adaptively explores
each joint’s correlation as the dataset changes. However, adaptive graph approaches only focus on exploring the cor-
relation between the spatial joints and do not explicitly model interdependencies between the channels. For actions
such as “waving hand”, the channels about the body’s frontal plane are more important than the channels about the
body’s median plane.

In terms of time series modeling, researchers mostly use Long Short-Term Memory (LSTM) network or Tempo-
ral Convolution Network (TCN). It is challenging for LSTM to learn the long-distance temporal correlations con-
sidering problems like losing effective features and vanishing gradient. TCN is the mainstream CNN method for
modeling skeleton sequences, but the lack of time series direction and the single scale make it difficult to guarantee
the richness and comprehensiveness of the information extracted by TCN.
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Fig. 2. Model overview. First, the skeleton sequence is extracted from the original video. Then, the information transfer in both spatial and
temporal directions is separated.

In this work, we address the above limitations from two aspects (Figure 1). First, we introduce the channel
attention mechanism in the GCN module to model interdependencies between the joint channels. Therefore, the
GCN spatial feature extraction module can focus on important semantics more efficiently. Second, we use dilated
convolutions [48] with different dilation rates to process time series in parallel, and adopt the technique of deep
concatenation in [49] to achieve the fusion of different receptive fields. This leads to a more powerful network that
can not only model long-term skeleton actions, but also recognize short-term repetitive actions such as clapping
hands. We also incorporate the joint type and frame index to the network [47], so that the joint connections and the
temporal sequences both have directionality. Besides, the skeleton sequence’s dynamics (position/3D coordinates
and velocity) are input into the network to make periodic characteristics of some actions are also merged into the
input features. In the end, we propose the powerful channel attention and multi-scale neural network, named CA-
MSN. We illustrate the overall model architecture in Figure 2.

To verify the effectiveness of the proposed CA-MSN, we conduct extensive experiments on two large-scale
datasets: NTU-RGBD60 [9] and NTU-RGBD120 [45]. The experiments have demonstrated that the channel atten-
tion GCN and the multi-scale TCN can significantly improve network accuracy. For better application in real life, a
multi-task tandem network is designed to realize the complete action recognition process (RGB video, 2D pose, 3D
pose, action type). We summarize our main contributions as follows:

e We propose a channel attention mechanism (CA-GCN) for graph convolutional networks, which effectively
models the relationship between joint feature channels and improves the spatial feature extractor’s performance.

e We propose a multi-scale temporal feature extraction scheme (MS-TCN) for skeleton sequence, so that both
long-term continuous actions and short-term repetitive actions can be precisely classified.

o We connect the CA-GCN and MS-TCN modules in series to form a powerful skeleton action recognition
network: CA-MSN, which shows the state-of-the-art performance on the NTU-RGBD60 and NTU-RGBD120
datasets.

e We design a complete end-to-end network from RGB videos to actions, so that the effect of our proposed
CA-MSN model in the application process can be displayed.

2. Relative works
2.1. 3D Skeleton Action Recognition

With the rise of deep learning and neural networks, end-to-end approaches are more competitive than traditional
approaches that use hand-crafted features in the field of 3D skeleton action recognition. Most of the earliest end-
to-end approaches use recurrent neural networks such as LSTM/GRU. Du et al. [7] divide the human skeleton
into five parts according to the human’s physical structure and then separately feed them to five subnets. Zhu et
al. [8] take the skeleton as the input at each time slot and introduce a novel regularization scheme to learn the



skeleton joints’ co-occurrence features. Inspired by the skeleton graphical structure, Liu et al. [10] propose a more
powerful tree-structure-based traversal method. After that, CNN approaches gradually emerge and are widely used
in 3D skeleton action recognition. Kim et al. [15] and Liu et al. [18] use the CNN characteristics to explicitly learn
interpretable action spatio-temporal representations and visualize them. Ke et al. [17] and Le et al. [19] exploit the
correlations between the different time periods of a skeleton sequence. In 2018, ST-GCN [22] sets a precedent for
using graph neural network methods to process skeleton sequences. After that, the GCN method gradually becomes
the mainstream method in the field of skeleton action recognition. Li et al. [27] and Shi et al. [28] make the topology
of the graph model can capture implicit joint correlations. Shi et al. [29] also represent the skeleton data as a directed
acyclic graph (DAG) based on the dependency between the joints and bones in the natural human body. Peng et
al. [50] propose the first automatically designed GCN for skeleton-based action recognition. However, the huge
computational complexity brought by the graph convolution network method is challenging to solve. Recently, in
order to combine the advantages of RNN, CNN and GCN networks, researchers use GCN module to extract the
topological relationship and RNN or CNN to model time series [43, 45-47].

2.2. Attention Mechanism in Computer Vision

The attention mechanism was first produced in NLP and then widely used in the field of computer vision. Its basic
idea is to teach the network to ignore the irrelevant information and focus on the key information. After the years
of development, the attention mechanism is mainly classified into three types: spatial attention [51, 52], channel
attention [53, 54], spatial and channel hybrid attention [55].

In most computer vision problems, only task-related areas need to be concerned, such as the subject in classifica-
tion tasks. The spatial attention allows the network to focus more on essential spatial areas. Spatial Transformer Net-
work (STN) [51] proposed by Google DeepMind is the most representative spatial attention network. Different from
the single-stage STN, Dynamic Capacity Network (DCN) [52] uses two sub-networks: low-capacity network and
high-capacity network. Low-capacity network is used to process the entire image and locate the region of interest.
High-capacity network refines the region of interest.

For the feature maps in CNN, the modeling of channel dimensions is also crucial. Squeeze-and-Excitation Net-
works (SENet) [53] learn the importance of each channel and then enhance or suppress different channels according
to different inputs. Furthermore, Selective Kernel Networks (SKNet) [54] and other methods combine such channel
weighting idea with the multi-branch network structure to improve the network performance.

Convolutional Block Attention Module (CBAM) [55] is a representative network of the spatial and channel atten-
tion hybrid mechanisms. The channel dimension utilizes both the max pooling outputs and average pooling outputs
with a shared network. Next, the both outputs are merged using element-wise summation. The spatial dimension
also uses the max pooling and average pooling to concatenate a feature map, and then uses convolutional layers
for learning. In addition, there are many researches related to the attention mechanism, such as residual attention,
multi-scale attention, recursive attention, etc.

3. Channel Attention and Multi-Scale Neural Networks

Channel attention-aware spatial modeling and multi-scale temporal modeling are the two main modules of our
network. For some simple actions with clear direction, the channel attention mechanism can make the GCN net-
work focus more on channels with rich information. The multi-scale temporal modeling makes the skeleton action
recognition network more adaptable to actions with different velocities. A skeleton-based video is a sequence of

frames formulated as F = {F1, Fa,- -+, Fr}, where T denotes the length of the video. A skeleton-based frame can
be formulated as a directed graph F, = {V,,&}, where V; is a set of skeleton joints and & is a set of directed edges
(bones). V; = {v},v2,--- ,vK} shows that there are K joints in the skeleton, and the 3D coordinate of the k™ joints

at the ¢ frame is expressed as v*. The data stream and symbolic representation of the overall model are shown in
detail in Figure 3.
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Fig. 3. This figure shows the architecture of the proposed channel attention and multi-scale neural networks (CA-MSN). Input is the addition
of position and velocity. Joint-type and frame-index are separately incorporated before CA-GCN and MS-TCN. CA-GCN can learn the spatial
relationship between joints and the dependencies between channels. MS-TCN can aggregate features of different temporal scales.

3.1. Spatial Feature Extraction

3.1.1. Encoding Input Features

The 3D coordinate of the skeleton sequence V¥ is the initial input of the network. But for action categories that
have a strong periodicity, ¥ is cyclical in the time dimension. When predicting a set of time series, it is necessary
to ensure that the statistical properties of the time series are invariant to time translation, so we need to stabilize the
periodic series. Differencing can smooth out the mean of the time series by removing some of the changing features,
and thus remove (or reduce) the trend and periodicity of the time series. In our model, the joint velocity v — vk | at
each frame is used to stabilize the time series of skeleton actions. To impart directionality to the bones, we introduce
the joint type JT into the network, which is encoded by the one-hot method. Aggregating the above three inputs can
be formulated as:

Ve = cat(V + (F = vk ) IT') € RS )

where vf,, (vk— v’;ﬁl)' and JT' are all encoded by two fully connected (FC) with ReLU layers before concate-
nated. C; is the dimension of the final input representation. cat denotes concatenating features in channel dimension

when the other dimensions are equal.

3.1.2. Adjacency Matrix

Since the natural connection between joints cannot fully represent the coupling relationship between skeleton
joints during actions, we need to recalculate the adjacency matrix to represent the dynamic correlation weight. There
are currently three mainstream methods for obtaining an adjacency matrix:

e Inner product: This method directly uses the similarity between the joint features to calculate the connec-
tion weight between the joints.
e Bi-linear form: This method uses a linear mapping on one of the feature vectors before calculating the

inner product.
e Trainable relevance score: This method fully uses the neural network layer to learn the adjacency

matrix.

The pure inner product method is too simple to explore the potential connection relationship between joints and does
not have data-driven characteristics. Therefore, this work uses the adaptive learning method to obtain the adjacency
matrix:
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convolution. Before learning the channel weights, average pooling is used to extract the channel descriptor. The recalculated output is obtained
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G,(i, j) = softmax((Wl\%' +b)" - (Wz\;fj + b3)) @)

We first use the FC layer to set learnable parameters Wy € RC1%2€1 W, € R€1%2C1 for the process of calculating
the adjacency matrix. Then, the inner product is used to calculate the connection weight between every two joints.
SoftMax is implemented using degree matrix D, G; = D~'/2C,;D~/2 normalizes C,, so that the total weight of each
joint to other joints is 1.

3.1.3. Channel Attention GCN ~
Using the normalized adjacency matrix G, and the encoded joint features V;, combined with the graph convolu-
tional network (GCN), messages can be transferred between joints:

M, = G,V,W, 3)

where W, € RC€1%€2 contains the learnable parameters in the GCN. We can get M = {My, M, --- , Mz} by per-
forming the above formula on each frame. However, the traditional GCN only models the spatial relationship be-
tween joints, and the interdependencies between channels are not fully explored. To solve this problem, we propose
the CA-GCN block which contains the channel attention module, as shown in Figure 4.

Firstly, we squeeze the global spatial and temporal information into a channel descriptor using global average
pooling:

T K

= Fyy(M) = 3> ] @

i=1 j=1

where z € R contains the feature representation of each channel. After that, we use the adaptive recalibration
method in SENet [53] to excite the channel features. The excitation module has two advantages: first it is flexible
and computationally small, second it can learn a non-mutually-exclusive relationship:

s = For(z, W) = 0(W36(Wyz)) S

C+ C
where 6 and o refers to the ReLU [56] and Sigmoid function, W5 € R7*C2 and Wy € RC2%7 are trainable
parameters. In order to limit the computational complexity, we only use two FC layers around the non-linearity to
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model the channel attention, i.e. a dimensionality-reduction layer with reduction ratio r and then a dimensionality-
increasing layer returning to the input channel dimension. We can adjust r to balance the accuracy and the compu-
tation complexity. Finally, the weight of each channel trained is multiplied by the skeleton feature M after the node
massages exchange:

mc/ == Fscale(sc’ mc) = Scme (6)

where M' = {my',my’,--- ,mc,’}, m. € RT*K is every channel’s feature map, s, is the channel’s weight. Finally,
add the residual connection:

N=M+VW, (7

W, upgrade the original input features V, to be the same dimension as M,’. We superimpose multiple channel
attention GCN modules to model the spatial relationship between joints and the interdependencies relationship
between channels.

3.2. Multi-Scale TCN

To extract the skeleton sequence features of different temporal scales, we use multi-scale TCN as shown in
Figure 5 to model the time series. First, we merge the one-hot encoded frame index: n* = n* + FI' € R, The
encoding approach of the frame index (FI) is the same as the joint type (JT) in section 3.1.1. After Max-Pooling the
spatial dimension, we get N € RT*1XC€2_The calculation of each branch is as the follow:

Ny :Ag(é(Ag(N))) +N (3)

where A, is a dilated convolution layer, g is the dilation rate. We set different g for different branches to obtain
different sizes of receptive fields without increasing the number of parameters. It is worth noting that each branch
has a residual connection. Next, the different scale features learned by the branches with different receptive fields are
aggregated N = cat(Ny, Na, N3) € RT*1%3C2After the concatenation, we use a pointwise convolutional layer to
fuse the features of the three different scale branches to C3 dimensions. Finally, the Max-Pooling layer aggregates all
frames’ feature representations followed by a fully connected layer and then a Softmax layer to make the prediction.

4. Experiments

To prove the effectiveness of our method, we conduct extensive experiments on two skeleton-based action recog-
nition datasets: NTU-RGBD60 [9] and NTU-RGBD120 [57]. We first perform exhaustive ablation studies to verify
the efficiency and capacity of our proposed channel attention graph convolutional networks (CA-GCN) and multi-
scale temporal convolutional networks (MS-TCN) on the NTU-RGBDG60 dataset. Finally, the network is evaluated
on NTU-RGBD60 and NTU-RGBD120 datasets to compare with the other state-of-the-art approaches.
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Fig. 7. Activations induced by excitation operator in CA-GCN modules of different depths and different classes. Each set of activations is named
according to the following scheme: CA_GCN_blockID.

4.1. Datasets

NTU-RGBD60 Dataset (NTUG60) [9]. This dataset consists of 56,880 action samples, including each sample’s
RGB video, depth map sequence, 3D skeleton data and infrared video. This dataset utilizes 3 Microsoft Kinect v2
RGB-D cameras to capture RGB and depth videos simultaneously. The RGB video resolution is 1920x1080, and the
depth map and infrared video are both 512x424. The 3D skeleton data contains the 3D positions of 25 main body
joints per frame, as shown in Figure 6. Skeleton tracking technology establishes the coordinates of various joints by
processing the depth data. There are two cross-validation methods, Cross Subject (CS) and Cross View (CV). For
CS setting, half of the 40 subjects are used for training and the rest for testing. For CV setting, two of three cameras
are used for training and the rest for testing.

NTU-RGBD120 Dataset (NTU120) [57]. This dataset is an extension of the NTU-RGBD60 action recognition
dataset with a total of 114480 action samples. The data structure is similar to NTU-RGBD60, while it expands the
60 action categories in NTU-RGBD60 to 120 action categories performed by 106 subjects. There are two cross-
validation methods, Cross Subject (C-Subject) and Cross Setup (C-Setup). For C-Subject setting, half of the 106
subjects are used for training and the rest for testing. For C-Setup setting, half of the setups are used for training and
the rest for testing.

All models are trained with the same batch size (64), learning schedule (adam with an learning rate as 0.001 and
reduced by 10 in epoch 60, 100, 120), and training epoch (140) with the Pytorch framework on a workstation with
an AMD Ryzen 9 3900XT CPU, an NVIDIA RTX 3090 GPU, and 64 GB of ECC RAM. Before the experiments,
we preprocess the initial skeleton sequences. Similar to [29], in order to eliminate the falsely detected body skeleton,
we first determine that the body energy is the summation of the skeleton’s standard deviation across each channel.
Then we choose the top two skeletons with the most energy. According to [10], we split the raw video into 20 clips
and randomly select a frame in each clip to compose a sequence with 20 frames. Finally, we center the skeleton in
every frame to eliminate the influence of subject’s position.

4.2. Ablation Study

In this section, we examine the effectiveness of the proposed channel attention GCN block, multi-scale TCN block
and their related components. Moreover, in order to have a deeper understanding of the channel attention in skeleton
action recognition, we deeply analyze the internal attention distribution and the effect on different actions. To ensure
no serious over-fitting and under-fitting problems, the dropout rate is adjusted accordingly in each experiment.



Table 1

Verify the difference between introducing semantic information in
different ways

Model #Params (x10°) Accuracy
CS (%) CV (%)

w/o JT w/o FI 1.3 87.3 92.9
add JT w/o FI 1.32 87.7 93.3
cat JT w/o FI 1.36 88.7 94.0
w/o JT add FI 1.32 87.9 93.4
w/o JT cat FI 1.45 88.1 93.3
cat JT add FI 1.38 89.2 94.3

4.2.1. Semantic of Joint Type and Frame Index

In section 3, we introduce the joint type (JT) and the frame index (FI) into the network by adding and concate-
nating, separately. The both different processing ways are based on the following analysis and experiments. Above
all, to our knowledge the joint type is more important than the frame index. Because the MS-TCN has implicitly
encoded the order of the sequence which is strengthened by the FI. Therefore, adding FI into the network is sufficient
for this purpose and save the amount of calculation. In contrast, if there is no JT in the GCN network, it is completely
impossible to distinguish the joint type, which is crucial for the overall network. The input concatenated with the JT
can have richer semantic information and stronger expression ability. The experiments in Table 1 verify the above
conclusions. w/o denotes without this semantic information, add denotes this semantic information is added into the
network, cat denotes this semantic information is concatenated into the network.

For the joint type, adding into the network brings the performance improvement of 0.4% and 0.4% in the accuracy
of the CS and CV settings, concatenating into the network brings the performance improvement of 1.4% and 1.1%
in the accuracy of the CS and CV settings. It is obvious that when the difference in the number of parameters is
only 0.04M, the effect of concatenation method is much better than add method, so we choose the concatenation
method to fuse the joint type and features. For the FI, adding into the network brings the performance improvement
of 0.6% and 0.5% in the accuracy of the CS and CV settings, concatenating into the network brings the performance
improvement of 0.8% and 0.4% in the accuracy of the CS and CV settings. The concatenation method increases the
0.13M parameters compared with the add method while the accuracy is almost not improved, so we choose the add
method to fuse the frame index and features.

4.2.2. Effectiveness of Channel Attention GCN

As shown in Table 2, we use three series GCNs without graph channel attention mechanism as the baseline for
spatial modeling. By adding the graph channel attention mechanism to GCN at different depths, it can be shown
that how to maximize the graph channel attention’s performance with the fewer number of parameters. For example,
All CA-GCN means that all three GCN modules use graph channel attention, and First CA-GCN means that only
the first GCN module uses graph channel attention. Comparing the results of experiments, it shows that only adding
graph channel attention to the first GCN module can not only use a smaller number of parameters, but also have the
same accuracy as all three GCNs using graph channel attention. The results inspire us that simply superimposing
graph channel attention cannot continuously improve the performance of the overall network. Only when channel
interdependencies need to be considered, the graph channel attention can work.

4.2.3. Visualization of Channel Attention Output

In order to explain the results of the experiments in Table 2 and understand the role of the excitation operator in
CA-GCN more clearly, in this section, we visualize the channel activation distribution of different network depths
and different action classes.

Above all, we observe the difference in channel activation between different actions. Specifically, we sample five
categories from the NTU-RGBDG60 dataset: type on a keyboard, point to, jump up, hug and eat meal. We select 64
samples from the five action classes to generate their channel activation weights, and then average these activations
of each channel to plot Figure 7.



Table 2
Effectiveness of CA-GCN and MS-TCN on the NTU-RGBD60

dataset
Model #Params (x109) Accuracy
CS (%) CV (%)

Baseline 0.69 87.9 93.6
+ All CA-GCN 0.99 88.6 94.3
+ First CA-GCN 0.72 88.6 94.3
+ Second CA-GCN 0.82 88.5 94.3
+ Third CA-GCN 0.82 88.5 94.5
+ MS-TCN 1.35 88.7 93.9
+ First CA-GCN + MS-TCN 1.38 89.2 94.3

We make the following two observations about the role of channel attention. Firstly, in the five classes of actions, it
can be found that there is a clear difference between the two-player action (hugging) and the other four single-player
actions in the line chart. Visualization results show that the channel attention mechanism can clearly distinguish
single-player actions and multi-player actions. Secondly, the channel activations of the four single-player actions
are basically the same. Similar to the findings of different pictures in [54], the earlier layer features in different
single-player skeleton actions are usually general. Only the deeper level features can effectively distinguish the
single-player skeleton actions.

Next, we compare the output of the excitation operator in different depth CA-GCN. We find that as the feature
level deepens, the discrimination of channel activation between different channels decreases (for all categories),
which is very obvious in CA_GCN_3 (the last block of spatial feature extraction). This result proves that channel
attention has a lower effect on channel recalibration in the GCN module close to the global pooling layer than in
earlier modules. The explanation also indirectly proves the experimental results that using channel attention in the
first GCN module better than using it in the latter GCN module in Table 2.

4.2.4. Effectiveness of Multi-Scale TCN

We use the multi-scale TCN to model the time series. The number and type of branches have a great impact on
the final modeling effect. Table 3 compares the effects of the combined models with different scale branches. D1
means 1 x 3 convolution with dilation rate = 1, D2 means 1 x 3 convolution with dilation rate = 2, and D3 means
1 x 3 convolution with dilationrate = 3. C means pointwise convolution, MP means 1 X 3 maximum pooling,
C-MP means pointwise convolution first, and then 1 x 3 maximum pooling. The spatial module uses the channel
attention mechanism in the first GCN. We explore that the experimental results are not always positively correlated
with the scale richness contained in branches. For example, adding C or C-MP to D1+D2+D3 can make the over-
fitting problem prominent, thereby reducing the accuracy of the test. To sum up the above, we aggregate the three
scale branches of dialation rate = 1, 2, 3 to model the time series.

4.2.5. Attention Influence of Different Actions

Our graph channel attention approach has different effects for different skeleton actions. In Figure 8, we select the
top-six action categories with the most significant effects after using graph channel attention to show the accuracy.
These actions can be divided into two categories according to the difference in motion dimensions. The first action

Table 3
Effects of different scales branch combination
Model #Params (x 10%) Accuracy
CS (%) CV (%)
Dl 0.72 88.6 94.3
D1+D2 1.05 88.4 93.6
D1+D2+D3* 1.38 89.4 94.5
D1+D2+D3+C 1.58 88.6 93.9
D1+D2+D3+C-MP 1.58 88.1 93.2
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Fig. 8. The top-six actions with the greatest accuracy improvement after using the graph channel attention: A27: jump up A26: hopping A2S5:
reach into pocket A23: hand waving A31: point to something A30: type on a keyboard.

type has clear directionality. For example, jumping up and hopping are global movements that are completely per-
pendicular to the ground; reaching into a pocket and pointing to something are local movements with clear direc-
tionality. The second action type has a fixed surface to move. For example, while waving hand, the arm only moves
in the frontal plane of the human body; while typing on a keyboard, both hands’ movement is basically limited to
the surface of the keyboard. On the contrary, channel attention has a weak effect on brushing teeth, falling down,
taking a photo, wielding knife and et al. In summary, the actions mentioned above which are more sensitive to graph
channel attention have significant differences in the information richness of different dimensions and joints.

4.2.6. Hyperparameter Selection

After determining the network architecture, the choice of hyperparameters is also critical to the model perfor-
mance. There are 4 FC layers in our network to encoding features. The FC layers which encode the joint position
features, the joint velocity features and the joint type have 64 nodes. The FC layer which encodes the frame index
has 256 nodes. In Table 4, we explore the effect of reduction ratio in the graph channel attention module. From the
experimental data in Table 4, it can be found that the reduction ratio and the parameters are inversely proportional.
In general, with the increase of reduction ratio, the accuracy decays more faster. We can use an appropriate reduc-
tion ratio to balance the accuracy and the computation complexity. In this paper, the reduction ratio is set to 1 for
achieving the best performance. The dropout is used only in MS-TCN, the dropout rate is set to 0.3.

4.3. Comparisons to the State-of-the-art

In Table 5, we compare various typical methods such as: RNN-based [7, 9-12], CNN-based [15, 17], GCN-based
[22, 27, 28], mixed methods-based [41, 47] with our skeleton action recognition model CA-MSN (Figure 3) on the
NTU-RGBD60 dataset. In Table 6, we compare the results of our model on the NTU-RGBD120 dataset with other
methods to prove the effectiveness of our method for fine-grained motions and object-related actions.

Table 4
Graph channel attention with different reduction ratios
A

Model #Params (x 10) ceuracy

CS (%) CV (%)
w/o CA 0.69 87.9 93.6
W CA r=1* 0.99 88.6 94.3
W CA r=2 0.84 88.3 94.1
W CA r=4 0.77 87.8 93.6




Table 5

Classification accuracy comparison against state-of-the-art methods
on the NTU-RGBD60 Skeleton dataset

Method CS (%) CV (%)
HBRNN-L [7] 59.1 64
Part-Aware LSTM [9] 62.9 70.3
ST-LSTM+Trust Gate [10] 69.2 77.7
STA-LSTM [11] 73.4 81.2
VA-LSTM [12] 79.4 87.6
TCN [15] 74.3 83.1
Clips+CNN+MTLN [17] 79.6 84.8
ST-GCN [22] 81.5 88.3
AS-GCN [27] 86.8 94.2
2s-AGCN [28] 88.5 95.1
SR-TSL [41] 84.8 924
SGN [47] 89 94.5
CA-MSN 89.4 94.5
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Fig. 9. This figure shows the series network architecture of pose estimation and action recognition. The whole model has three parts: OpenPose,
SemGCN and CA-MSN. Each sub-network uses the loss of its own task for training.

Some pure LSTM methods in Table 5, such as Part-Aware LSTM [9] and STA-LSTM [11], have an lower accuracy
by about 20% compared with our method. The accuracy of the typical CNN methods, such as Clips+CNN+MTLN
[17] and RotClips+MTCNN [58] in Table 5 and Table 6 have not reached the advanced level which can be ap-
plied. CA-MSN outperforms the typical spatio-temporal GCN method ST-GCN [22] in Table 5 by 7.9% in the ac-
curacy for CS setting. The above results show that simply using a certain method to model both the temporal and
spatial characteristics of skeleton sequences is limited and cannot fully explore the potential spatial and temporal
dependencies.

Table 6
Classification accuracy comparison against state-of-the-art methods
on the NTU-RGBD120 Skeleton dataset

Method C-Subject (%)  C-Setup (%)
Part-Aware LSTM [9] 25.5 26.3
Clips+CNN+MTLN [17] 58.4 57.9
RotClips+MTCNN [58] 62.2 61.8
SkeleMotion [20] 62.9 63
TSRIJI [21] 67.9 59.7
SGN [47] 79.2 81.5

CA-MSN 79.5 81.8




Compared with the mixed model of multiple methods, such as SR-TSL [43] and SGN [47], our CA-MSN has
more in-depth exploration of the potential relationship between the frames and the channels of skeleton actions. In
Table 5, CA-MSN brings the performance improvement of 4.2% and 2.1% in the accuracy of the CS and CV settings
than SR-TSL. Notably, our method is the first to integrate the channel attention mechanism into the graph network
for skeleton action recognition. The accuracy comparison results also verify the effectiveness of our method.

5. Application

In the above research, we propose an advanced skeleton-based action recognition model CA-MSN. However, in
actual applications, the input is usually RGB videos, while the input of CA-MSN model is 3D skeletons. In this
chapter, we will explore how to extract human 3D skeleton sequences from raw videos and classify them with the
CA-MSN model in series. As shown in Figure 9, the OpenPose method is firstly used to extract 2D skeleton from
the original RGB image. Subsequently, the semantic graph convolution network (SemGCN) learns the potential
relationship between 2D skeleton sequences and 3D skeleton sequences to predict the 3D pose. Finally, the 3D pose
is used as the input of the CA-MSN to obtain the final action classification result. It is worth noting that the three
networks in Figure 9 are trained separately and then used in series.

Human3.6M [59]. The motions in the dataset are performed by 11 professional actors, including 5 females and 6
males. We choose 7 subjects (3 females and 4 males) for training and 4 subjects (2 females and 2 males) for testing.
To ensure authenticity, the subjects are dressed in their regular clothing, rather than special motion-capture outfits.
The dataset consists of 3.6 million different human poses collected with 4 digital cameras. This dataset has complete
RGB video - 2D pose - 3D pose data, and is widely used in the study of predicting action categories from RGB
videos. So this paper uses the Human3.6M dataset to conduct experiments on our series networks.

5.1. 3D Skeleton Sequence Extraction

There are two mainstream methods for extracting 3D skeletons from monocular RGB images. The first method
uses the deep learning model to establish an end-to-end mapping from monocular RGB images to 3D coordinates,
but the features that need to be learned are too complex for a single model. The second method needs two steps.
The first step is to get 2D skeleton using 2D pose estimation model. The second step is to regress the identified
2D skeleton to predict the 3D skeleton using the prior knowledge of the dataset. Although the end-to-end regres-
sion method is simple to operate, the accuracy is difficult to guarantee due to the complexity of feature mapping.
So we use the two-step method. The 2D pose estimation is implemented using OpenPose proposed by Cao et al.
[60] of Carnegie Mellon University (CMU) in 2017. The mapping encoding from 2D to 3D poses is managed by
SemGCN proposed by Zhao et al. [61] in 2019. There are two reasons for choosing the SemGCN network. Above
all, this method uses graph convolution networks to process joint coordinates, which is consistent with our CA-MSN
network. This consistency facilitates subsequent tandem deployment. In addition, due to the serial deployment of
three networks, it is difficult to guarantee the speed of calculation, so reducing the amount of calculation in each
step is important. The SemGCN we choose has an order of magnitude smaller model size than other algorithms.
Figure 10 shows the results of the 3D skeleton extraction experiment using the Human3.6M dataset. The first line is
the extracted 2D skeleton; the second line is the 3D skeleton obtained by the 2D to 3D pose regression. We select
some representative frames in several continuous actions for visualization. Comparing the predicted 3D skeleton
sequence with the ground truth, the error is within an acceptable range. The observation confirms that it is feasible
to predict the action using 3D skeleton sequences which are regressed from their corresponding 2D projections.



Table 7

Comparison with video-based models in terms of parameters, cal-
culations, FPS (Measured on NVIDIA GTX2080Ti GPU), and

accuracy

Method #Params (x109) #FLOPs (x109) #FPS  Accuracy (%)
X3D-M [62] 3.76 4,73 174 83.0
Gate-Shift [63] 10.5 16.45 98 86.8
TSM [64] 48.6 98 25 84.7
GST [65] 21 29.5 58 86.3
O-S-C (Ours) 10+0.43+1.38=11.81  12.45+0.73+1.92=15.54 64 87.5

5.2. Joint Deployment

In actual applications, multiple models need to work together to realize the action recognition function. The
end-to-end (RGB video-to-action type) network is obtained by serially deploying the three models of OpenPose,
SemGCN and CA-MSN. Figure 10 shows the test results of the joint deployment. We intercept video clips of 3
different actions (eating, greeting and taking photos) as test samples, and visualize the RGB image + 2D posture and
3D posture. In the process of testing the overall model, the three submodels bring huge cumulative errors. There are
two connection points in the series network. The first is the 2D pose output by OpenPose as the input of SemGCN,
and the second is the 3D pose output by SemGCN as the input of CA-MSN. Our improved OpenPose achieves the
single-person AP of 91.3% based on the Human3.6M dataset when the OKS threshold is 0.5. Therefore, 8.7% of
the 2D poses output by OpenPose have a large deviation from the ground truth 2D poses in Human3.6M. The actual
2D pose input to SemGCN is significantly different from the standard input. Similarly, the actual 3D pose input to
CA-MSN is also significantly different from the standard input. Errors in the two stages cause that the SemGCN
and CA-MSN models tested in our series network perform far worse than tested with standard data. To solve this
problem, OpenPose is first pretrained on the coco dataset, and then fine-tuned on the Human3.6M dataset. SemGCN
uses the prediction results of the OpenPose model fine-tuned on the Human3.6M dataset as the training input, and
still the 3D skeleton ground truth as the label value. The skeleton action recognition model CA-MSN also needs to
be retrained on the Human3.6M dataset. After the above training mode changes, it can be ensured that the domain
relationships of the three models are relatively close. The serious influence caused by the cumulative errors of the
series models is prevented.

5.3. Comparison with Video-Based Action Recognition

This chapter combines the skeleton action recognition method with the pose estimation to form an integrated
network. The network uses the skeleton output of the pose estimation to classify the actions in the video. Through
the application, it shows that compared with video-based recognition methods, skeleton action recognition has more
steps and cumulative error problems. As shown in Table 7, we select several of the advanced video-based action
recognition methods in recent years to compare with our skeleton-based action recognition method in terms of
parameters, calculations, speed and accuracy. O-S-C denotes our OpenPose-SemGCN-CA-MSN series network. In
terms of accuracy, our method outperforms the RGB video-based methods with the same computational complexity.
Because video-based methods are easily disturbed by visual features such as background and clothing, they are less
robust than skeleton-based methods. In terms of computational complexity, our approach with 11.81M parameters
and 15.54GFLOPs calculation has no obvious advantage. Because the 2D pose estimation occupies most of the
computing resources (84.7% in parameters, 80.1% in FLOPs). In future work, reducing the weight of the 2D pose
estimation method will make the skeleton-based action recognition method full of potential in computational speed.
Notably, our series network achieves 5.53% fewer GFLOPs than the Gate-Shift method, but a 40.81% drop in
FPS. This illustrates that series network has lower computational efficiency with similar computational complexity.
Making the series network more holistic is a direction to solve this problem.



RS s

Key frames for continuous actions in time

>

Fig. 10. OpenPose-SemGCN-CA-MSN joint deployment test. The actions from top to bottom are eating, greeting and taking pictures. The first
line of each action is RGB image+-2D Pose. The second line of each action is 3D Pose.

5.4. Viewpoint Invariance

Viewpoint invariance is indispensable for the practical application of action recognition algorithms. Recognition
networks generally use pictures from several fixed views during training, but in practical applications, human actions
may be observed from many different views. In Table 8, we compare the viewpoint invariance differences of video,
2D skeleton, and 3D skeleton-based methods using Cross View settings. 3-TrainV denotes three of four views are
used for training, and 1-TestV denotes one of four views are used for testing. When using three views for training
and one view for testing, the 3D skeleton-based method achieves the best performance of 90.4%, the video-based
method achieves 84.6%, and the 2D skeleton-based method performs the worst, only 75.2%. In the more difficult
task of using 2 views for training and 2 views for testing, the 3D skeleton-based method drops by 6.3%, the video-
based method drops by 8.7%, and the 2D skeleton-based method drops by 20%. In conclusion, 3D skeleton method
> video method > 2D skeleton method in terms of the viewpoint invariance. The results of 2D skeleton-based method



Table 8

With Cross View setting, compare the robustness of the three meth-
ods (video-based, 2D skeleton-based, 3D skeleton-based) to perspec-
tive changes

Dataset Segmentation ~ Method ~ #Params (x10%)  #FLOPs (x10%) #FPS  Accuracy (%)

X3D-M 3.76 4.73 174 84.6
3-TrainV 1-TestV O-C 11.38 14.37 72 752
O-S-C 11.81 15.54 64 90.4
X3D-M 3.76 4.73 174 759
2-TrainV 2-TestV O-C 11.38 14.37 72 54.2
O-S-C 11.81 15.54 64 84.1

are almost catastrophic. The main reason is that it is difficult to learn the 3D spatial motion relationship between
joints directly from 2D poses. And because the 2D-3D pose regression method has a small number of parameters,
the 2D skeleton-based method has a weak advantage in computational complexity. Based on the above analysis, the
3D skeleton-based method has obvious advantages in view invariance.

6. Conclusion

In this work, we propose a new time-space series network based on channel attention GCN and multi-scale
TCN to improve the accuracy of skeleton action recognition. We explore the characteristics of the channel attention
mechanism in the GCN network while extracting skeleton joint features. In addition, the processing method of
multi-scale dilated convolution makes the temporal receptive field more abundant and positively affects actions of
different cycle periods. Furthermore, We use the global maximum pooling for each frame of joint features to connect
the spatial module and the temporal module. The specialization of feature extraction can improve the efficiency of
modeling feature representation. The final model exceeds the current state-of-the-art performance on two large-scale
datasets: NTU-RGBD60 and NTU-RGBD120. In the end, we design a OpenPose-SemGCN-CA-MSN network to
realize the end-to-end (RGB video-to-action type) application. From the application, we discover that it is difficult
to train the sub-models separately and then test the whole model in series. Therefore, the focus of future research
will be how to design a multi-task framework for jointly estimating 2D or 3D human poses from color images and
classifying human actions from video sequences. Meanwhile, the interpretability of GCN will also play a critical
role in skeleton action recognition.
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