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Abstract

“Search for” or “Navigate to”? When we find a spe-
cific object in an unknown environment, the two choices al-
ways arise in our subconscious mind. Before we see the
target, we search for the target based on prior experience.
Once we have seen the target, we can navigate to it by re-
membering the target location. However, recent object nav-
igation methods consider using object association mostly to
enhance the “search for” phase while neglecting the im-
portance of the “navigate to” phase. Therefore, this paper
proposes a dual adaptive thinking (DAT) method that flexi-
bly adjusts thinking strategies in different navigation stages.
Dual thinking includes both search thinking according to
the object association ability and navigation thinking ac-
cording to the target location ability. To make navigation
thinking more effective, we design a target-oriented memory
graph (TOMG) (which stores historical target information)
and a target-aware multi-scale aggregator (TAMSA) (which
encodes the relative position of the target). We assess our
methods based on the AI2-Thor and RoboTHOR datasets.
Compared with state-of-the-art (SOTA) methods, our ap-
proach significantly raises the overall success rate (SR) and
success weighted by path length (SPL) while enhancing the
agent’s performance in the “navigate to” phase.

1. Introduction
Object navigation [29, 22, 25, 42] is a challenging task

that requires an agent to find a target object in an unknown
environment with first-person visual observations. Some
researchers [31, 15, 19] recently introduced scene prior
knowledge into end-to-end navigation networks. These
methods have been applied to address various issues, in-
cluding object associations [39], object attention bias [6],
and the lack of universal knowledge [16]. However, these
methods improve the efficiency of only the “search for”
phase (start→the target is first seen) while neglecting the
“navigate to” phase (the target is first seen→end). Our ex-
periments (Table 6 in Appendix B) show that for the current
SOTA end-to-end methods, the “navigate to” steps account

Target:Book

First See Target

The agent needs to search for and navigate to a book

“Navigate to” Phase

Search Thinking Search Thinking
Navigation Thinking

Fu
si

on

“Search for” Phase

Figure 1. The first target-visible frame divides the agent’s naviga-
tion process into two phases: “search for” (pink) and “navigate to”
(blue). During the “search for” phase, the agent uses only search
thinking to search for the target. During the “navigate to” phase,
navigation thinking assists the agent in quickly navigating to the
target location.

for 62.75% of the whole path, while only 45.78% for hu-
mans; the success rate after seeing the target is only 81.09%,
while humans can reach 99.92%. Therefore, the primary is-
sue with current end-to-end object navigation techniques is
the low navigation efficiency in the “navigate to” phase.

Some modular approaches [5, 32] model the environ-
ment by using top-down semantic maps [30, 34]. With the
help of detailed semantic maps, the object navigation task
can be decoupled into two training subtasks: predicting the
subtarget point and navigating to the subtarget point, thus
optimizing the agent navigation ability after seeing the tar-
get. However, these methods depend strongly on semantic
maps, which are hypersensitive to sensory noise and scene
changes. Furthermore, generating high-quality semantic
maps requires considerable computational resources.

To address the above issues, we aim to integrate this task
decoupling concept in modular methods into end-to-end
methods. Therefore, we propose the dual adaptive thinking
(DAT) method. As shown in Figure 1, the agent’s think-
ing modes are divided into search thinking and navigation

1
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thinking. Search thinking guides the agent to quickly lo-
cate the target according to prior knowledge. Navigation
thinking assists the agent in efficiently navigating to the tar-
get position after locating the target. The agent adaptively
adjusts the dominance of the two thinking methods in an
end-to-end network according to the navigation progress.

Specifically, we develop different designs for the search
thinking network and navigation thinking network. For the
search thinking network, we adapt the directed object atten-
tion (DOA) graph method proposed in [6] to design object
association and attention allocation strategies. For the navi-
gation thinking network, we propose a target-oriented mem-
ory graph (TOMG) to store the simplified agent state and
target orientation information. Furthermore, we design a
target-aware multi-scale aggregator (TAMSA) to refine the
features in the TOMG to guide the agent’s navigation.

Extensive experiments on the AI2-Thor [20] and
RoboTHOR [8] datasets show that our DAT method not
only optimizes the “navigate to” phase in the end-to-end
network but also outperforms the state-of-the-art (SOTA)
method [6] by 8.07% and 8.66% in the success rate (SR)
and success weighted by path length (SPL). Moreover, we
propose three new metrics, search success rate (SSR), navi-
gation success rate (NSR) and navigation success weighted
by navigation path length (NSNPL), to respectively assess
the agent’s search ability during the “search for“ phase and
the navigation ability during the “navigate to” phase. As
a general concept, the proposed multiple-thinking strategy
can be applied in various other embodied artificial intelli-
gence tasks. Our contributions can be summarized as fol-
lows:

• We propose a dual adaptive thinking (DAT) method
that allows the agent to flexibly use different modes
of thinking during navigation.

• We carefully design a navigation thinking network
with a selective memory module (TOMG) and a fea-
ture refinement module (TAMSA) to implicitly encode
the target location into the end-to-end network.

• We demonstrate that our DAT method not only ad-
dresses inefficiencies in the “navigate to” phase but
also substantially outperforms existing object naviga-
tion models.

2. Related Works
2.1. Object Navigation

Object navigation tasks [3, 37, 35] require an agent to
navigate to a target object in an unknown environment while
considering only visual inputs. Recently, the relationships
between objects have been introduced into navigation net-
works, allowing agents to locate targets more quickly by

considering object associations. Zhang et al. [41] pro-
posed the hierarchical object-to-zone (HOZ) graph to guide
an agent in a coarse-to-fine manner. Moreover, Dang et al.
[6] utilized a directed object attention (DOA) graph to ad-
dress the object attention bias problem. These works allow
agents to locate targets faster but do not address how to nav-
igate to these targets more quickly. Our dual adaptive think-
ing (DAT) method divides agents’ thinking into two types:
search thinking and navigation thinking, which can collab-
orate adaptively to make every navigation stage efficient.

2.2. Modular Navigation

Modular navigation methods [5, 32] have been proposed
to solve the generalizability problem of end-to-end models
in complex environments. It has been proven that using a
top-down semantic map to predict distant subgoal points [5]
is feasible on the Habitat dataset. The PONI [32] method
trains two potential function networks by using supervised
learning to determine where to search for an unseen ob-
ject. These modular methods require considerable com-
puting and storage resources to generate semantic maps in
real time and are sensitive to image segmentation quality.
Our method implicitly incorporates different thinking dur-
ing navigation into an end-to-end network without relying
on semantic maps.

3. Necessity of Dual Thinking
3.1. Dual Thinking in Humans

Embodied AI [12] is a challenging research topic that
requires agents to use well-developed intuitive tasks (e.g.,
classification [36] and detection [24]) to complete complex
logical tasks (e.g., navigation [43] and interaction [33]) in
real-world environments. Humans often use multiple ways
of thinking when completing these complex logical tasks.
For example, when we need an object, we first use asso-
ciative thinking to locate the object and then use naviga-
tional thinking to reach the object location; when we an-
swer a question about an object, we first use exploratory
thinking to fully understand the object and then use reason-
ing and language-organized thinking to draw conclusions.
Therefore, multiple thinking approaches can be introduced
in end-to-end networks to develop interpretable hierarchical
models that are more consistent with how humans address
complex logic problems.

3.2. Repeated Target Search Problem

In current methods, if the agent loses the target in view,
the target must still be searched for again to locate it. Conse-
quently, the agent wastes considerable time in re-searching
for the target, potentially leading to constant loops. This
problem is especially common in environments with many
obstacles. A clear orientation memory for the target is the

2
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Figure 2. Model overview. TOMG: target-oriented memory graph. TAMSA: target-aware multi-scale aggregator. Our model includes three
modules: search thinking, navigation thinking and adaptive fusion. In the search thinking network, we endow the model with an object
association ability according to the directed object attention (DOA) graph method proposed in [6]. In the navigation thinking network, we
provide the model with the ability to remember the target orientation. In the adaptive fusion network, we make the dual thinking work in
harmony according to the navigation progress.

key to solve this problem. Therefore, we design a target-
oriented memory graph (TOMG) and a target-aware multi-
scale aggregator (TAMSA) in the navigation thinking net-
work to ensure that the agent navigates to the target effi-
ciently without repeatedly re-searching.

4. Dual Adaptive Thinking Network
Our goal is to endow agents with both search and navi-

gation thinking and to adjust their status based on the nav-
igation process. To achieve this goal, we design three net-
works, as illustrated in Figure 2: (i) search thinking net-
work; (ii) navigation thinking network; (iii) adaptive fusion
network. (i) and (ii) are connected by (iii) to form the dual
adaptive thinking (DAT) network.

4.1. Task Definition

The agent is initialized to a random state s = {x, y, θ, β}
and random target object p. Here, (x, y) represents the
coordinates of the agent, (θ, β) represents the yaw and
pitch angles of the agent. At each timestamp t, according
to the single view RGB image ot and target p, the agent
learns a navigation strategy π(at|ot, p), where at ∈ A =
{MoveAhead; RotateLeft; RotateRight; LookDown;
LookUp; Done} and Done is the output if the agent be-
lieves that it has navigated to the target location. Ultimately,
if the agent is within a threshold (i.e., 1.5 meters [10]) of the
target object when Done is output, the navigation episode
is considered successful.

4.2. Search Thinking Network

Search thinking aims to enable the agent to quickly cap-
ture the target with the fewest steps when the target is not in
view. To use efficient object association, we adopt the un-
biased directed object attention (DOA) graph method pro-
posed in [6]. As shown in the green box in Figure 2, accord-

ing to the object-target association score Gt calculated by
the DOA method, we redistribute the attention to the object
features St (from DETR [4]) and image features It (from
ResNet18 [17]) to ensure that the agent pays attention to
objects and image regions that are more relevant to the tar-
get.

In the object attention redistribution process, the object-
target association score of each object q is multiplied by the
object features St to generate the final object embedding Ŝt:

Ŝq
t = Sq

tG
q
t q = 1, 2, · · · , N (1)

where Ŝt = {Ŝ1
t , Ŝ

2
t , · · · , ŜN

t }, and N is the number of
objects.

In the image attention redistribution process, we assign
attention to image features It according to the object se-
mantic embeddings generated by the one-hot encodings.
Initially, the semantic embeddings are weighted by Gt ∈
RN×1 to obtain the attention-aware object semantics D. We
use D as the query and It as the key and value in the multi-
head image attention to generate the final image embedding
Ît:

Qi = DWQ
i Ki = ItW

K
i Vi = ItW

V
i i = 1, · · · , NH (2)

headi = softmax(
QiK

T
i√

HD
)Vi (3)

Ît = Concat(head1, · · · , headNH)WO (4)

where HD and NH denote the hidden dimensionality and
number of heads in the multi-head attention.

Finally, the attention-aware object features Ŝt and image
features Ît are concatenated with the previous action em-
bedding PA to obtain the output ST of the search thinking
network.

4.3. Navigation Thinking Network

Target-Oriented Memory Graph (TOMG) Different
from search thinking, navigation thinking requires the abil-

3
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ity to memorize, locate and navigate to the target. Thus,
we design a target-oriented memory graph (TOMG) as the
input feature M . There are two types of nodes in the his-
tory route map (see the purple box in Figure 2): (i) visited
target-visible nodes where the agent detects the target in
view; (ii) visited target-invisible nodes where the agent
does not detect the target in view. Navigation thinking only
focuses target-related information; thus the TOMG is com-
posed of the visited target-visible nodes. Previous histori-
cal memory methods [14, 44] which store both the images
mi ∈ R7×7×512 and objects mo ∈ RN×256 features contain
too much redundant noise. In contrast, our TOMG node
only stores high-level features m ∈ R1×9 which is con-
catenated by three parts: the target bounding box, the tar-
get confidence and the agent’s coordinates. By eliminating
redundant inputs, our target-oriented storing method uses
3000× less storage than previous methods [14, 44].

Since the agent cannot obtain its own absolute position
and orientation in unknown environments, the stored coor-
dinates (xi, yi, θi, βi) are calculated relative to the starting
coordinate (x0, y0, θ0, β0) . Target-visible nodes are filtered
by a confidence threshold cf of target recognition. Finally,
to ensure the reliability of target orientation prediction, only
the L closest target-visible nodes to the current node in the
path are stored.

Egocentric Coordinate Transformation As the agent
navigates during each step, the decisions (e.g., rotate right)
are made relative to the current agent’s own coordinate sys-
tem. Therefore, before using the TOMG features, we con-
vert the coordinates of each node in the TOMG to the co-
ordinate system of the current node (xc, yc, θc, βc) (see the
orange box in Figure 2):

(x̃i, ỹi) = (xi, yi)− (xc, yc)

(θ̃xi , β̃
x
i ) = sin((θi, βi)− (θc, βc))

(θ̃yi , β̃
y
i ) = cos((θi, βi)− (θc, βc)) i ∈ ∆M

(5)

where ∆M represents the index collection of target-visible
nodes. To ensure that the angle and position coordinates
have the same order of magnitude, we use sin and cos
to normalize the angle coordinates to [−1, 1]. After this
egocentric coordinate transformation, we obtain egocentric
TOMG features M̃ ∈ RL×11.

Target-Aware Multi-Scale Aggregator (TAMSA) To
encode navigation thinking into the network, we design a
target-aware multi-scale aggregator (TAMSA) to aggregate
the egocentric TOMG feature M̃ into an implicit represen-
tation NT . In contrast to typical methods that use trans-
formers or temporal convolutions as encoders, we devise a
unique dynamic encoder that better leverages the memory
graph features, as described below.

FC

TCN

Dilation rate = 1

TCN

Dilation rate = 2

Aggregator Kernel

Flatten

Target

Pool

Circle Padding

Dilation rate = 0 Matrix multiply
Element-wise multiply

FC

FC

.........

Figure 3. A detailed explanation of the target-aware multi-scale
aggregator (TAMSA). We first use the multi-scale TCNs to ob-
tain aggregator kernels that aggregate the target-oriented memory
graph (TOMG) with L nodes into graph with £ nodes. Then, the
aggregated features allocate attention to the channel dimension us-
ing the target semantics. We describe the circle padding method
applied in our TCNs below the figure.

First, to improve the feature expression ability of the
navigation thinking network, we use fully connected (FC)
layers to map the features M̃ to higher dimensional spaces.
Inspired by some advanced works [9, 26] on vision trans-
formers, we add layer normalization between the two FC
layers to stabilize the forward input distribution and back-
propagation gradient [38]. The encoding details can be for-
mulated as follows:

Y = δ(LN(M̃WM1)WM2) (6)

where δ denotes the ReLU function, LN denotes layer nor-
malization, and WM1 ∈ R11×16 and WM2 ∈ R16×32 are
learnable parameters.

Then, a multi-scale dynamic kernel is calculated to refine
the target orientation features into implicit nodes. As shown
in Figure 3, we use three temporal convolution networks
(TCNs) with different dilation rates d to generate three dy-
namic kernels with distinct scales. It is worth noting that the
TCN with d = 0 degenerates to an FC layer. In the early
stages of the “navigate to” phase, the TOMG contains fewer
valid nodes; thus, the boundary degradation caused by zero
padding has a greater impact. To avoid padding with zero,
inspired by [40], we design the circle padding (CP) which
fills the sequence edge with the features at the other end
of the sequence (Figure 3). The different scale kernels are
added after multiplying by the learnable parameter wd:

H(l) =

2∑
d=0

wd(
∑
j∈Ψ

Y (l + j ∗ d) ∗ fd(j) + bd) (7)

where H = {H(1), · · · , H(L)}, l is the central node of
the convolution kernel, Ψ refers to the set of offsets in
the neighborhood considering convolution conducted on the
central node, Y (·) takes out the node features in Y , and

4
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Table 1. Ablation results on each module in the three sub-networks: search, navigate and fusion.

ID
Search Thinking Navigation Thinking Fusion ALL (%) Episode

Time (s)↓Associate Pretrain TOMG Egocentric TAMSA AF LN SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑
1 71.34 40.36 92.41 76.19 43.74 0.258
2 ✓ 74.43 40.93 95.82 77.67 44.11 0.334
3 ✓ ✓ 76.78 43.88 94.19 81.40 47.09 0.334
4 ✓ ✓ ✓ 76.02 43.15 93.41 80.21 47.12 0.336
5 ✓ ✓ ✓ ✓ 78.12 42.01 95.12 82.13 45.80 0.336
6 ✓ ✓ ✓ ✓ 78.04 45.67 94.83 82.29 48.44 0.345
7 ✓ ✓ ✓ ✓ ✓ 80.88 45.71 95.46 84.72 48.31 0.346
8 ✓ ✓ ✓ ✓ ✓ ✓ 81.34 47.53 96.38 84.39 49.74 0.350
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 82.39 48.93 97.25 84.71 50.32 0.352

fd and bd denote the weights and biases in the convolution
kernel with dilation rate d. The multi-scale dynamic kernel
H ∈ RL×£ refines Y ∈ RL×32 to Ỹ ∈ R£×32.

Intuitively, the mappings between the observation data
and target azimuth differ when searching for different tar-
gets. For example, when looking for a TV, even if the TV
is located far from the agent, the agent can clearly identify
the target and obtain a larger target bounding box; however,
when looking for a mobile phone, the agent can only obtain
a smaller target bounding box, even if the agent is close to
the mobile phone. Therefore, we enhance the TAMSA rep-
resentation by considering the target semantic information.
To achieve this goal, the one-hot target index E is encoded
to the same channel dimension as Ỹ through two FC layers,
whose result is channel-wise multiplied with Ỹ to get the
target-aware feature representation Ŷ :

Ŷ = HTY ⊙ δ(δ(EWE1)WE2) (8)

Finally, to obtain the final output NT of the navigation
thinking network, we flatten Ŷ from R£×32 to R1×32£ and
use an FC layer to reduce the output dimension. Further-
more, we add residual connections to ensure the stability of
the feature transfer process.

NT = δ(Flatten(Ŷ )WY ) +
1

£

£∑
l=1

Ŷ (l) (9)

A dropout layer is added before the output to reduce over-
fitting in the navigation thinking network.

4.4. Adaptive Fusion (AF) of Dual Thinking Net-
works

Search thinking and navigation thinking have different
work strategies according to the navigation progress. Dur-
ing the “search for” phase, since there are no visited target-
visible nodes, NT is an all-zero matrix. Therefore, the nav-
igation thinking network does not affect the action decision
when the target has not yet been seen. During the “navigate
to” phase, to ensure navigation robustness, search thinking
and navigation thinking work together to guide the action

decision. As the number of visited target-visible nodes in-
creases, navigation thinking gradually dominates. The fu-
sion process of the two thinking methods can be expressed
as:

DT = (LN(Concat(NT, ST )))W (10)

where W is a learnable parameter matrix that adaptively ad-
justs the proportion of the two thinking networks, and LN is
demonstrated to be significantly beneficial to the generaliz-
ability of the model.

Finally, the dual adaptive thinking output DT is used to
learn an LSTM [18] action policy π(at|DTt, p).

4.5. Policy Learning

Following the previous works [27, 13], we treat this
task as a reinforcement learning problem and utilize the
asynchronous advantage actor-critic (A3C) algorithm [28].
However, in the search thinking network, the complex
multi-head attention calculations are difficult to directly
learn by reinforcement learning [11]; thus, we use imita-
tion learning to pretrain the search thinking network. We
divide the continuous action process into step-by-step ac-
tion predictions and teach the agent to rely on only object
associations to determine actions without considering his-
torical navigation information. After pretraining, we obtain
a search thinking network with a basic object association
ability. Finally, the search thinking network and the naviga-
tion thinking network are jointly trained via reinforcement
learning.

5. Experiment
5.1. Experimental Setup

Datasets AI2-Thor [20] is our main experimental plat-
form, which includes 30 different floorplans for each of 4
room layouts: kitchen, living room, bedroom, and bath-
room. For each scene type, we use 20 rooms for training,
5 rooms for validation, and 5 rooms for testing. Addition-
ally, we employ the RoboTHOR [8] dataset, which has 2.4
times larger area and 5.5 times longer trajectory length than
AI2-Thor.

5
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Figure 4. We compare the metrics in paths with L ≥ 5 while storing different features and path lengths for navigation thinking. The red
five-pointed star indicates the choices that optimize the given indicator.

Evaluation Metrics We use the success rate (SR) and
success weighted by path length (SPL) [1] metrics to eval-
uate the overall performance of our method. Our proposed
matrics, search success rate (SSR), navigation success rate
(NSR) and navigation success weighted by navigation path
length (NSNPL), are used to clearly reflect the agent’s abil-
ity in the “search for” phase and “navigate to” phase.

SR is formulated as SR = 1
F

∑F
i=1 Suci, where F

is the number of episodes and Suci indicates whether
the i-th episode succeeds. SPL considers the path
length more comprehensively and is defined as SPL =
1
F

∑F
i=1 Suci

L∗
i

max(Li,L∗
i )

, where Li is the path length taken
by the agent and L∗

i is the theoretical shortest path.
SSR is the success rate for the “search for” phase and

is formulated as SSR = 1
F

∑F
i=1 Navi, where Navi in-

dicates whether the i-th episode enters the “navigate to”
phase. NSR is the success rate for the “navigate to”
phase and is formulated as NSR = 1

FNav

∑F
i=1 SuciNavi,

where FNav is the number of episodes that enter the “navi-
gate to” phase. NSNPL considers the navigation efficiency
during the “navigate to” phase and is defined as:

NSNPL =
1

FNav

F∑
i=1

SuciNavi
L∗Nav
i

max(LNav
i ,L∗Nav

i )

(11)
where LNav

i is the path length in the “navigate to” phase and
L∗Nav
i is the theoretical shortest path length in the “navigate

to” phase. During testing, we calculate L∗Nav
i in real time

according to the starting position of the “navigate to” phase
(the position where the agent first recognizes the target) in
each task path. Intuitively, NSNPL can be conceptualized
as the SPL of “navigate to” phase.

Implementation Details We train our model with 18
workers on 2 RTX 2080Ti Nvidia GPUs. The dropout
rate and target-visible filter cf in our model are set to 0.3
and 0.4, respectively. The number of implicit nodes £ in
TAMSA is set to 3. We report the results for all targets
(ALL) and for a subset of targets (L ≥ 5) with optimal
trajectory lengths greater than 5. More network details are
given in Appendix A.

Table 2. Ablation experiments on each module in the target-aware
multi-scale aggregator (TAMSA). Dynamic: dynamic aggregator
kernel, TA: target-aware, MS: multi-scale, CP: circle padding.

Method
ALL (%)

SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑
Average Pooling 79.67 45.14 97.29 81.88 47.89

Transformer 77.23 43.24 96.31 80.06 46.34
TCN 78.66 43.41 96.16 81.52 46.61

TAMSA

A1 Dynamic 80.15 44.26 97.04 82.59 47.31
A2 A1+TA 81.20 46.71 97.17 83.56 48.93
A3 A1+MS 81.14 47.28 96.93 83.64 49.51
A4 A2+MS 81.32 47.41 97.42 83.47 49.28
A5 A4+CP 82.39 48.93 97.25 84.71 50.32

5.2. Ablation Experiments

Baseline Similar to [10, 41, 6], our baseline model adopts
the features concatenated from the image branch (from
ResNet18 [17]), object branch (from DETR [4]) and pre-
vious action branch as the environment perception encod-
ing. Next, an LSTM network is used to model the temporal
implicit features. The first row in Table 1 shows the perfor-
mance of our baseline.

Dual Thinking As shown in Table 1, the model with
search thinking outperforms the baseline with the gains of
5.44% and 3.52% in SR and SPL. The search thinking net-
work enables the agent to quickly locate the object through
object associations. Incorporating our proposed navigation
thinking directly improves the NSR and NSNPL by 3.32%
and 1.22%, demonstrating that the navigation thinking im-
proves the agent’s navigation ability after seeing the target.

Navigation Thinking Network The navigation thinking
network includes three key modules: the target-oriented
memory graph (TOMG), the egocentric coordinate transfor-
mation module and the target-aware multi-scale aggregator
(TAMSA). Rows 4 through 7 in Table 1 show the ablation
results on the three modules. The navigation thinking net-
work without the TAMSA increases the SR by 1.34% but
decreases the SPL by 1.87%. TAMSA improves the SPL
back by refining the introduction of navigation thinking.
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Figure 5. Compare the NSNPL of DOA[6] method and our pro-
pose DAT method target-by-target on the AI2-Thor. After using
the DAT method, red target objects improve significantly and blue
target objects decrease. Pie chart summarizes the contributions of
all scenes. The right side of the pie chart shows common objects
in each scene.

The simplified and highly abstract storage features in
the TOMG facilitate the subsequent feature refinement and
thinking integration. Figure 4 displays various metrics and
computation speeds while using different storage features
(TOMG, object and image) and maximum stored steps L.
Image features perform the worst. Compared with object
features, our TOMG considerably improves the NSNPL.
Most importantly, the TOMG is substantially less complex
than other storage methods. In terms of computational effi-
ciency, when the number of stored steps is set to 40, com-
pared with storing object and image features, the TOMG
improves the computational speed by 41.43% and 47.69%,
respectively. In terms of memory usage, the TOMG re-
quires only 0.64% and 0.29% of the memory required by
the object and image features. Furthermore, as the number
of stored steps increases, the computational burden of the
TOMG storage method remains essentially constant.

Target-Aware Multi-Scale Aggregator (TAMSA) Our
proposed TAMSA uses a dynamic kernel to achieve auto-

matic sequence length reduction without applying global
pooling at the end. As shown in Table 2, the use of ei-
ther TCNs or transformers exhibits worse performance than
using average pooling directly. This finding suggests that
our navigation thinking network is incompatible with these
widely used encoders. Based on the initial aggregator
model (A1), the target-aware (TA) property brings improve-
ments of 0.97%, 1.62%, and the multi-scale (MS) property
brings improvements of 1.05%, 2.20% in NSR and NSNPL.
Furthermore, we utilize circle padding (CP) to prevent seri-
ous information loss in limited target-visible nodes, thereby
optimizing the path during short-distance navigation.

Fusion of Dual Thinking Modules Our proposed adap-
tive fusion module (rows 8 and 9 in Table 1) effectively in-
tegrates the two separately designed thinking networks and
improves the SR, SPL and SSR metrics by 1.51%, 3.22%
and 1.79%. Fundamentally, adaptive fusion and layer norm
decouple diverse thinking and increase the specificity of
varied thinking.

5.3. Comparative Analysis of Different Targets

Figure 5 visualizes the NSNPL for different targets using
the DOA [6] model and our DAT model. Obviously, the ob-
jects with the highest NSNPL belong to the kitchen scene,
and the objects with the lowest NSNPL belong to the bed-
room scene. The bedroom has more complex obstacles than
the kitchen, which leads to the gap in difficulty of the “nav-
igate to” phase. The NSNPL of most objects has improved
thanks to our DAT method, notably those in the intricate
bedroom scene and the small, challenging-to-identify tar-
get objects. However, our approach yields a minor decline
for several items, such as plates and coffee machines, in the
simple kitchen scene. This may be improved by predict-
ing scene complexity in real time during navigation. More
results and analysis can be found in Appendix E and F.

Table 3. Comparison with SOTA methods on the AI2-Thor [20] / RoboTHOR [8] datasets.%indicates unacceptable resource consumption.

ID Method ALL (%) Episode Time (s)↓SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑

I SSCNav [23] 77.14 / 38.12 31.09 / 14.10 89.14 / 61.37 86.54 / 62.13 51.72 / 35.14 1.342 / 4.145%
PONI [32] 78.58 / 38.42 33.78 / 16.30 89.48 / 58.46 87.81 / 65.72 52.39 / 39.83 1.591 / 4.582%

II OMT [14] 71.13 / 32.17 37.27 / 20.09 93.17 / 61.77 76.34 / 52.08 41.36 / 24.51 0.645 / 2.011
VGM [21] 73.95 / 35.82 40.69 / 23.71 94.42 / 62.93 78.32 / 56.92 42.62 / 25.80 0.731 / 2.458

III

ORG [10] 67.32 / 30.51 37.01 / 18.62 91.07 / 59.64 73.88 / 51.15 40.24 / 20.64 0.241 / 0.769
HOZ [41] 68.53 / 31.67 37.50 / 19.02 91.44 / 60.11 74.94 / 52.68 40.83 / 21.02 0.283 / 0.808

VTNet [11] 72.24 / 33.92 44.57 / 23.88 94.18 / 63.29 76.62 / 53.59 46.74 / 28.26 0.321 / 1.325
DOA [6] 74.32 / 36.22 40.27 / 22.12 95.73 / 64.18 77.63 / 56.43 44.11 / 25.88 0.334 / 1.247

IV Ours (DAT) 82.39 / 41.72 48.93 / 27.91 97.25 / 67.24 84.71 / 62.04 50.32 / 34.27 0.352 / 1.211
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thinking applied in the “navigate to” phase

Figure 6. We show the navigation routes of three different models to complete the same task in the same environment. The baseline (ORG
[10]) fails to navigate in the “search for” phase. The search thinking method (DOA [6]) and our DAT method diverge at the decision key
frame in the “navigate to” phase. The navigation routes in more scenarios are shown in Appendix G.

5.4. Comparisons with the State-of-the-Art

Our DAT method is compared with three categories of
relevant SOTA methods, as shown in Table 3. (I) Modular
methods based on active SLAM. An agent with a seman-
tic map can directly use the path planning method to quickly
navigate to the target after locating it; thus, these methods
obtain a higher NSNPL. Nevertheless, these methods re-
quire considerable efforts to explore the environment which
makes finding targets ineffective. The SPL of the current
state-of-the-art modular method PONI [32] is 15.15/11.61
lower (AI2-Thor/RoboTHOR, %) than that of our DAT
method. More seriously, maintaining the semantic map at
all times causes each step to consume several times as long
as our method. (II) Long-term memory methods. These
methods theoretically depend on historical information to
model environments more clearly; however, methods such
as OMT [14] and VGM [21] store overcomplicated features,
increasing the difficulty of network learning. Therefore, the
current memory modules do not exert their full strength.
(III) Search thinking methods. These methods enhance
search capabilities through object association. Compared to
the best search thinking model DOA [6], our DAT model
brings 8.07/5.50, 8.66/5.79 and 6.21/8.39 improvements in
SR, SPL and NSNPL (AI2-Thor/RoboTHOR, %). More
experiments are in Appendix D.

5.5. Qualitative Analysis

Routes of different methods are visualized in Figure 6.
The baseline model is stuck in the wrong room due to its
limited capability to search for targets. The search thinking
model is disturbed by extraneous objects in the “navigate
to” phase, leading it to choose the wrong direction at the
keyframe. In contrast, our DAT method chooses the appro-
priate left room based on the representation of the target
relative position generated by navigation thinking.

(b) Failure (Initially Trapped)

Desk Lamp

Start

1 2 3 4 5

6 7 Cycle. . .
16 17

18 Cycle. . .
20

Rotate. . .
21 27

Turn Right Turn Left Move Ahead DoneAction:

(a) Failure (Recognition Error)

Start

Book

Recognition Error Frame

Error:Book

1 2 3 4 5

6 7 8 Repetitive
Action. . .

14

15 16

3

Figure 7. Failure cases with the first-person views. For brevity, the
camera’s up-and-down motion has been omitted.

6. Limitations and Failure Cases
Some potential limitations are observed in testing. (i)

The model is sensitive to object detection accuracy (Fig-
ure 7(a)). How to improve the robustness to error recogni-
tion is worth exploring. (ii) The agent sometimes gets stuck
in narrow and complex initial environments without histor-
ical information (Figure 7(b)). Endowing agents with the
ability to escape from the deadlock in end-to-end learning
may be the key to solving this problem and we leave this for
future works.

7. Conclusion
In this paper, we propose the dual adaptive thinking

(DAT) method, such innovation enables agents to efficiently
and reliably reach the target position after locating the tar-
get. Dual thinking includes the search thinking respon-
sible for searching the target and the navigation thinking
responsible for navigating to the target. Extensive experi-
ments prove that dual adaptive thinking flexibly adjusts the
thinking methods according to the navigation stage, thereby
improving the success rate and navigation efficiency. It is
worth noting that beyond the current object navigation task,
multiple adaptive thinking can theoretically be applied to
various time-series embodied AI tasks.
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Table 4. The details of dual adaptive thinking network for object navigation.
Module Index Input Operation Output

Search Thinking

(1) St FC+ReLU (22× 49)
(2) (1) Attention Distribution (22× 49)
(3) (2) Reshape+0.3Dropout (22× 7× 7)
(4) D(Q) It(K,V ) Multi-head Attention (HD = 512, NH = 8) (64× 7× 7)
(5) PA FC+ReLU (1× 10)
(6) (5) Repeat (10× 7× 7)
(7) (3,4,6) Concatenation (96× 7× 7)

Navigation Thinking

(8) TOMG Coordinate Egocentric (27× 11)
(9) (8) FC+ReLU (27× 16)

(10) (9) TAMSA (£ = 3) (1× 32)
(11) (10) Repeat+0.3Dropout (32× 7× 7)

Adaptive Fusion
(12) (7,11) Concatenation+LayerNorm (128× 7× 7)
(13) (12) FC+ReLU (64× 7× 7)
(14) (13) 0.3Dropout+Flatten 3136

Policy Learning
(15) (14) Two Layers LSTM 512
(16) (15) Actor FC 6
(17) (15) Critic FC 1

Table 5. Hyperparameters during training.

Reward
penalize each step -0.01

encourage move ahead +0.01
succeed +5.00

A3C

discount factor 0.99
lambda parameter for GAE 1.00

entropy term coefficient 0.01
value loss coefficient 0.50

Learning Rate pretrain 0.0005
reinforcement learning 0.0001

A. More Network Details
A.1. Simulated Environment

We discretize the scene into a 0.25m grid of navigable
points. To speed up reinforcement learning training, we pre-
compute the environmental data from the simulator for each
point offline. Therefore, the agent can only move between
these points. The step size is 0.25m, the yaw rotation is 45
degrees, and the pitch rotation is 30 degrees.

A.2. Model Architecture

The model architecture and key details are presented in
formulas and images in the main paper. Table 4 gives more
details on the input, operation, hyperparameters and feature
dimensions of each layer.

The search thinking module has three branches: objects
(1-3), images (4), past actions (5-6). The object branch in-
put St ∈ R22×262 is obtained by DETR [4], which encodes
object appearance (class labels and bounding boxes) as well
as instance relations and global contexts. The image branch

input St ∈ R512×7×7 uses ResNet18 [17] features, which
preserve spatial relationships better than deeper features. To
ensure consistent dimensions for concatenation, object fea-
tures and past action features are reshaped to match image
features (7× 7).

The navigation thinking module uses TOMG as input,
which stores only target-related information. If an object
with target confidence cf ≥ 0.4 is visible, its related infor-
mation is stored in TOMG.

A.3. Training Hyperparameters

The hyperparameters for training our DAT model are
given in Table 5. We use the same reward setting as DOA
[6], which has three components: (i) A small negative re-
ward of -0.01 for each step. (ii) A positive reward of 0.01
for moving ahead. (iii) A large positive reward of 5.0 for
reaching any instance of the target object category within a
certain number of steps.

We set the discount factor to 0.99 to balance long-term
and short-term rewards. The object navigation task is com-
plex and hard to converge, so we use n-step bootstrapping
advantage estimation by setting lambda to 1 in GAE. The
entropy term coefficient and value loss coefficient in A3C
are 0.01 and 0.5 respectively.

We pre-train our model with supervised learning using a
learning rate of 0.0005. Then we train it with reinforcement
learning using a learning rate of 0.0001.

B. Disadvantages of Single Thinking
In the introduction, we explain the problems with single

thinking in the “navigate to” phase. In this section, quan-
titative experimental results (Table 6) are used to explain
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Table 6. The performance of methods with different thinking levels in the processes of “navigate to” and “search for”.

Method
Path Length Success Rate Rotation Action Rate

ALL Search Navigate ALL Search Navigate Search Navigate

Single Thinking 19.92±0.31 7.42±0.14 12.50±0.21 76.87%±0.52% 94.80%±0.22% 81.09%±1.03% 66.33%±0.75% 60.53%±0.92%

Dual Thinking 18.26±0.20 7.96±0.11 10.30±0.18 82.39%±1.21% 97.25%±0.34% 84.71%±0.82% 71.62%±0.79% 49.04%±0.66%

Human 13.15±0.27 7.13±0.20 6.02±0.15 97.14%±0.84% 97.22%±0.79% 99.92%±0.03% 78.88%±0.42% 31.45%±0.34%

in detail the navigation behavior gap between single think-
ing and human thinking. Moreover, how our dual adaptive
thinking (DAT) approach bridges this gap is presented.

B.1. Acquisition of Data

In Table 6, we display the metrics for three different
thinking. The single thinking model removes the naviga-
tion thinking module from our overall model, leaving only
the search thinking module. The dual thinking model is
our complete DAT model. Human thinking is based on
real people tests. We invited 10 subjects to independently
complete all tasks that the agent must complete in all test
environments. To acquire the final human indicators, the
indicators of these 10 subjects are averaged after removing
the highest value and the lowest value.

We analyze three main categories of indicators: path
length, success rate and rotation action rate.

1) The path length is the average number of steps taken
by the agent to complete the test tasks. The overall
path consists of two phases: “search for” phase and
“navigate to” phase; the first target-visible frame is the
dividing point. Therefore, the overall path length is
equal to the path length of the “search for” phase plus
the path length of the “navigate to” phase.

2) The success rate is the ratio of the agent successfully
reaching the target position and outputting Done. In
addition to the overall success rate, we also counted
the search success rate and the navigate success rate.
In particular, if the agent recognizes the target object,
then the “search for” phase is successful.

3) The rotation action rate is the ratio of actions that
do not change the agent’s position. We counted the
agent’s rotation action rate in the “search for” phase
and the “navigate to” phase.

B.2. Comparative Analysis of Different Thinking

In terms of the path length, the human result is 6.77 steps
shorter than the single thinking method, which is attributed
mainly to the gap in the “navigate to” phase. By introduc-
ing dual thinking, our DAT method significantly optimizes
the route in the “navigate to” phase, and the navigation effi-
ciency in the “search for” phase is maintained.

Regarding the success rate, the overall success rate is af-
fected by the combination of the search success rate and the
navigation success rate. The navigation success rate is in-
creased since the dual thinking network can memorize and
generate the target’s approximate orientation thanks to our
navigation thinking. Introducing navigation thinking has
also improved the search success rate because navigation
thinking shares the navigation pressure for search thinking
so that search thinking can focus more on searching tar-
gets. Finally, end-to-end networks are determined to per-
form comparably to humans in terms of the search success
rate, but there is still a significant difference in the naviga-
tion success rate. Therefore, how to improve the navigation
success rate is still the main problem to be solved in the
future.

Concerning the rotation and straight actions, as the think-
ing complexity increases, rotation actions are gradually
concentrated in the “search for” phase. This trend is con-
sistent with the different demand characteristics between
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Figure 8. Different model structures for implementing dual thinking.
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Table 7. Comparison with different model structures for implementing dual thinking.

Method
ALL (%) L ≥ 5 (%) Episode

Length↓SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑ SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑
Partially Separated 77.49 46.61 95.68 80.99 48.26 69.48 45.62 94.97 73.66 48.14 27.19

Completely Separated 72.09 40.16 94.53 76.26 40.21 63.14 38.57 93.55 67.49 39.83 23.65
DAT (Ours) 82.39 48.93 97.25 84.71 50.32 76.21 49.32 96.22 79.20 50.14 19.87

the “search for” phase and the “navigate to” phase. In the
“search for” phase, the agent needs to efficiently obtain
environmental information and capture the target through
abundant rotation actions. In the “navigate to” phase, the
agent already knows the position of the target and needs to
move forward to approach the target. The clear division of
labor in each stage ensures efficient navigation.

C. Different Dual Thinking Structures
The essence of dual thinking is to use different decision

networks in different navigation stages, which can be ac-
complished by using various model structures. As shown
in Figure 8, in addition to our dual adaptive thinking (DAT)
structure, we also experiment with completely and partially
separated model structures.

C.1. Completely Separated Structure

The completely separated structure entirely decouples
the thinking used in different stages. The difference with re-
spect to our DAT method is that in the “navigate to” phase,
the agent does not engage in search thinking and relies
only on navigation thinking to make decisions. As Table 7
shows, the NSR of the completely separated structure is
very low. There are two reasons for this model’s failure: (1)
At the beginning of the “navigate to” phase, the target infor-
mation in the target-oriented memory graph (TOMG) is not
sufficient to generate a complete target orientation, so it can-
not independently support action decisions. (2) If no search
thinking is performed, visual information will be lost, re-
sulting in a loss of obstacle avoidance ability. Therefore, in
our DAT model, search thinking is active at all times.

C.2. Partially Separated Structure

In the partially separated structure, search thinking and
navigation thinking take the same input features but use dif-
ferent encoding networks to model the different types of
thinking. The difference with respect to our DAT method
is that instead of using our target-oriented coordinate fea-
tures, navigation thinking relies on the same visual features
as search thinking. As seen in Table 7, the performance
of the partially separated structure is not ideal, especially
the episode length is too long. The comparison results sug-
gest that the presence of too much redundant information
in the visual features makes it too difficult for the naviga-
tion thinking network to learn the relative position of the

target. More seriously, unreasonable navigation thinking
affects the learning of the backbone visual embedding net-
work, causing the whole model to collapse.

C.3. DAT Structure

Our DAT method uses specific input features and a rea-
sonable adaptive fusion method for dual thinking to ensure
stable and excellent network performance in different navi-
gation stages.

D. Comparisons with the State-of-the-Art
We simply compare the aggregate metrics of all episodes

due to space restrictions in the main text. However, the per-
formance differences between various approaches cannot be
completely displayed because some objects in the test set
are quite close to the agent. Therefore, in Table 8 and Ta-
ble 9, we supplemented the results of episodes with path
lengths larger than 5 (L ≥ 5) in the two datasets. In end-to-
end methods (II, III, IV), our method outperforms the SOTA
method (DOA [6]) by 8.33 / 7.00, 8.96 / 4.14 in SR and SPL
(L ≥ 5, AI2-Thor / RoboTHOR, %). Additionally, our ap-
proach outperforms previous end-to-end approaches during
both the “search for” and the “navigate to” phases.

It is worth noting that there is no detailed navigation ca-
pability comparison between end-to-end methods (II, III,
IV) and modular methods (I) in previous works. Two modu-
lar approaches (SSCNav and PONI) are transferred from the
Habitat dataset to the AI2-Thor and RoboTHOR datasets
in our research. Compared with the end-to-end methods,
the module approaches offer clear advantages in the “navi-
gate to” phase because of the strong interpretability of the
semantic map. However, the heavy reliance on semantic
mapping also results in high computing costs and inefficien-
cies during the “search for” phase. Therefore, modular ap-
proaches have great potential in scenarios where semantic
maps can be reused repeatedly, but end-to-end approaches
are still preferred in completely unknown environments.

E. Target Level Indicators
Our method has obvious advantages over other methods

in terms of overall metrics. However, due to variations in
navigational complexity and path characteristics between
various target objects, we carried out a comparative exper-
iment of each single target object. The findings not only
deepen our understanding of the DAT method’s benefits but
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Table 8. Comparison with SOTA methods in AI2-Thor [20]. %indicates unacceptable resource consumption.

ID Method
ALL (%) L ≥ 5 (%) Episode

Length↓
Episode

Time (s)↓SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑ SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑
Random 4.12 2.21 —- —- —- 0.21 0.08 —- —- —- 38.12 —-

I
SSCNav [23] 77.14 31.09 89.14 86.54 51.72 71.73 34.33 89.02 80.58 50.73 35.26 1.342%

PONI [32] 78.58 33.78 89.48 87.81 52.39 72.92 36.40 89.13 81.81 51.82 33.64 1.591%
II OMT [14] 71.13 37.27 93.17 76.34 41.36 61.94 38.19 92.23 67.16 42.63 26.26 0.645

III

SP [39] 68.92 38.56 91.31 75.48 40.26 52.73 33.84 89.72 58.77 35.62 27.84 0.219
SAVN [37] 63.12 37.81 89.16 70.79 40.71 52.01 34.94 88.10 59.04 38.55 27.32 0.272
ORG [10] 67.32 37.01 91.07 73.88 40.24 58.13 35.90 90.27 64.40 38.69 26.17 0.241
HOZ [41] 68.53 37.50 91.44 74.94 40.83 60.27 36.61 90.31 66.74 39.82 27.24 0.283

VTNet [11] 72.24 44.57 94.18 76.62 46.74 63.19 43.84 92.85 68.06 46.15 20.01 0.321
DOA [6] 74.32 40.27 95.73 77.63 44.11 67.88 40.36 93.92 72.27 44.03 22.86 0.334

IV Ours (DAT) 82.39 48.93 97.25 84.71 50.32 76.21 49.32 96.22 79.20 50.14 19.87 0.352

Table 9. Comparison with SOTA methods in RoboTHOR [8]. %indicates unacceptable resource consumption.

ID Method
ALL (%) L ≥ 5 (%) Episode

Length↓
Episode

Time (s)↓SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑ SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑
Random 0.00 0.00 —- —- —- 0.00 0.00 —- —- —- 0.00 —-

I
SSCNav [23] 38.12 14.10 61.37 62.13 35.14 33.46 11.04 60.91 54.93 33.93 106.37 4.145%

PONI [32] 38.42 16.30 58.46 65.72 39.83 34.72 13.22 58.11 59.75 38.44 92.73 4.582%
II OMT [14] 32.17 20.09 61.77 52.08 24.51 25.33 18.16 57.35 44.17 23.82 62.99 2.011

III

SP [39] 27.43 17.49 57.91 47.37 20.19 20.98 16.03 53.48 39.23 18.27 68.18 0.714
SAVN [37] 28.97 16.59 57.23 50.62 19.55 22.89 15.21 54.84 41.74 19.14 67.22 0.812
ORG [10] 30.51 18.62 59.64 51.15 20.64 23.89 14.91 54.64 43.72 19.51 69.17 0.769
HOZ [41] 31.67 19.02 60.11 52.68 21.02 24.32 14.81 54.23 44.85 20.38 66.26 0.808

VTNet [11] 33.92 23.88 63.29 53.59 28.26 26.77 19.80 57.72 46.38 27.50 60.27 1.325
DOA [6] 36.22 22.12 64.18 56.43 25.88 30.16 18.32 61.39 49.13 25.11 61.24 1.247

IV Ours (DAT) 41.72 27.91 67.24 62.04 34.27 37.16 22.46 66.13 56.19 34.10 58.81 1.211

also assess its drawbacks, offering suggestions for further
study and advancement.

E.1. Experimental Setup

In the test floorplans of AI2-Thor, we initialized 8000
tasks (scene, initial position and target object) at random.
We independently count the indicators (SR, SPL, SSR, NSR
and NSNPL) of each target object when the agent com-
pletes these 8000 tasks. To observe how the agent performs
when confronted with long path tasks, we additionally ex-
tract episodes with path lengths higher than 5. The experi-
mental results for the DOA [6] method and our DAT method
are presented in Tables 10 and Table 11, respectively.

E.2. Result Analysis

Comparison of Different Target Objects As Tables 10
and Table 11 show, the SR and SPL have a large variance
on various targets, and even the gap between the maximum
and minimum SR can reach more than 70%. This finding
demonstrates that the navigation difficulty varies greatly as
the target changes. According to the definition of SR, SSR
and NSR, we obtain the following relationship:

SR ≈ SSR×NSR (12)

≈ is used because there are a few instances where naviga-
tion is successful even though the target object is not rec-
ognized. Therefore, the variance fluctuation of the SR con-
sists of the variance fluctuation of the SSR and the vari-
ance fluctuation of the NSR. Comparing the SSR column
and the NSR column in Tables 10, it can be determined that
the large variance of the SR is caused by the NSR and all
targets achieve a high level of SSR. This indicates that the
current end-to-end object navigation algorithm’s difficulty
is reflected primarily in the “navigate to” phase while the
ability to find targets in the “search for” phase has basically
matured. For example, when using the DOA method, the
success rate (SR) of the most difficult target alarm clock
is only 31.42%, but the success rate for the “search for”
phase (SSR) has reached 99.28%. From this perspective,
our DAT method is very specifically tailored to address the
main shortcoming of existing end-to-end object navigation
techniques.

Comparison of Different Methods Figure 9 illustrates
our DAT method’s influence on each target object. In the
main text, we analyze the NSNPL which improves most
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obviously. In addition, NSR has also been significantly im-
proved on various target objects. This displays that the navi-
gation thinking we introduced not only optimizes the path of
the “navigate to” phase but also substantially raises the suc-
cess rate of the “navigate to” phase. Unexpectedly, our DAT
approach significantly improves the SSR on only several
challenging search objects and even degrades on some tar-
get objects. This phenomenon is attributed to two reasons:
(i) The original DOA method has a strong target search abil-
ity through search thinking, so it is challenging to make a
significant development without introducing more powerful
search strategies. (ii) The search ability for each target is
balanced after introducing navigation thinking and thinking
adaptive fusion techniques.

Additionally, Figure 9 highlights which target objects re-
spond best to our strategy and which ones do not. Obvi-
ously, the alarm clock and the cell phone are the two targets
that our DAT method benefits the most; and of all the target
objects, they are the two tiniest and hardest to locate. The
difficulty in finding them is that the probability of the target
recognition failing is greatly increased. Our DAT method
considerably enhances the information use of each target
identification by abstracting memory, which benefits small
targets that are challenging to recognize. At a higher level,
the differences between the different scenes are also quite
obvious. The only few targets that perform poorly with our
strategy are common objects in the kitchen. As discussed
in the main text, the environment layout of the kitchen is
relatively simple, so a simple end-to-end model sometimes
works better. Therefore, we believe that it is necessary for
the agent to adjust the thinking strategy in response to the
perception of the environment layout. This is also a think-
ing direction we provide for researchers.

F. Scene Level Indicators
We discover that the contrasts between various scenes

are quite clear from the analysis of each target object.
Therefore, we conduct experiments on the DOA method
and our DAT method in different scenes. We randomly se-
lect 1000 tasks from each scene and let the two methods
complete these 1000 tasks simultaneously. The results are
illustrated in Table 12.

F.1. Result Analysis

On all metrics, the bedroom scene benefits the most from
our DAT method. Obviously, the bedroom is the most
challenging to navigate of the four scenes. Therefore, our
method is more helpful for complex and difficult scenes.
Bathroom and Kitchen are two simpler scenes that require
fewer steps to navigate to the target object. The optimiza-
tion of our method for these two scenes is not so obvious.

G. Qualitative Results
In the main text, due to space limitations, we select only

a simple scene for a qualitative analysis of navigation be-
havior. In Figure 10, we visualize the agent’s navigation
paths with different targets in four complex scenarios. We
discover that when the agent needs to make a key decision,
there is often no target in view. At these critical decision-
making moments, our DAT method can provide the agent
with the relative position information of the target, thereby
improving the critical decision-making success rate. More
significantly, our method makes each step of the agent more
stable and purposeful in the “navigate to” phase. Reflecting
on the navigation route, once the target has been seen, our
method reduces the movement for in-situ exploration and
applies more forward movement to navigate to the target
position more efficiently.

H. Multiple Adaptive Thinking in Embodied
AI

The dual adaptive thinking (DAT) network proposed in
this paper provides key inspiration for future research. In
object navigation tasks, dual adaptive thinking can be ex-
tended to multiple adaptive thinking. Environment model-
ing thinking, object state understanding thinking, and other
types of thinking can be introduced in multiple adaptive
thinking models. Furthermore, multiple adaptive thinking
is not limited to object navigation tasks. In other embod-
ied AI tasks, such as embodied question answering (EQA)
[7] and visual language navigation (VLN) [2], agents can
use multiple thinking approaches to more flexibly address
real-world problems.

15



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

ICCV
#10348

ICCV
#10348

ICCV 2023 Submission #10348. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 10. The outcome of applying the DOA method with each object as the target.

DOA
ALL (%) L ≥ 5 (%) Episode

Length↓SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑ SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑
Alarm Clock 31.42 17.65 99.28 31.65 17.77 25.58 15.67 99.22 25.78 14.87 37.35

Book 54.54 27.31 84.84 64.28 31.74 44.16 25.75 80.00 55.20 31.15 25.43
Bowl 88.33 51.55 100.00 88.33 58.33 84.84 53.59 100.00 84.84 57.48 12.85

Cell Phone 48.90 25.05 86.26 56.69 32.24 35.24 20.28 79.50 44.33 23.95 33.28
Chair 63.24 33.08 98.02 64.52 31.59 53.00 32.28 97.26 54.49 31.08 26.19

Coffee Machine 91.66 53.39 100.00 91.66 53.82 87.23 57.87 100.00 87.23 54.80 12.38
Desk Lamp 78.94 42.74 93.42 84.50 49.79 69.81 42.06 90.56 77.09 46.24 17.42
Floor Lamp 54.13 27.89 95.48 56.69 29.98 49.56 28.90 94.78 52.29 30.35 27.31

Fridge 77.77 42.66 100.00 77.77 40.59 72.09 45.06 100.00 72.09 44.12 21.18
Garbage Can 69.83 44.00 96.83 72.12 45.65 65.67 44.58 96.34 68.16 45.30 21.69

Kettle 87.50 55.95 100.00 87.50 64.39 85.71 59.42 100.00 85.71 64.07 18.00
Laptop 82.49 44.33 95.72 86.19 46.84 74.28 42.12 93.71 79.26 44.59 18.07

Light Switch 82.71 47.95 97.95 83.87 53.07 75.14 50.06 98.22 76.21 50.24 17.22
Microwave 91.23 46.97 100.00 91.22 46.50 87.50 52.92 100.00 87.50 51.16 15.49

Pan 62.26 35.40 94.34 66.00 40.34 56.82 30.99 93.18 60.97 38.83 24.92
Plate 79.63 41.12 96.29 82.69 43.41 72.97 42.23 94.59 77.14 44.35 17.57
Pot 56.86 30.42 92.15 59.57 33.91 41.93 23.56 87.09 44.45 25.75 25.98

Remote Control 77.52 43.35 93.02 82.49 45.75 69.76 40.91 90.69 76.92 41.89 17.07
Sink 90.17 43.43 94.57 95.35 44.80 80.34 44.86 90.34 88.93 47.74 13.46

Stove Burner 93.49 58.89 100.00 93.49 62.92 89.19 60.55 100.00 89.19 60.34 13.11
Television 84.21 44.84 99.12 84.95 43.88 79.01 48.43 98.76 80.00 49.81 18.07

Toaster 76.19 46.00 100.00 76.19 51.56 72.72 46.83 100.00 72.72 50.43 17.16

Table 11. The outcome of applying the DAT method with each object as the target. ✓indicates the target objects that benefit the most from
our method.

DAT
ALL (%) L ≥ 5 (%) Episode

Length↓SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑ SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑
Alarm Clock ✓ 45.00 29.22 96.43 46.67 30.37 40.31 27.22 96.12 41.94 28.27 24.79

Book 59.39 32.52 89.69 66.21 36.98 45.83 30.94 85.83 53.39 34.54 29.31
Bowl 86.66 56.08 98.33 88.13 56.94 81.81 58.51 100.00 81.82 51.65 9.98

Cell Phone ✓ 68.68 32.79 90.65 75.76 39.76 57.37 28.68 86.88 66.05 34.74 27.86
Chair 67.19 36.01 98.42 68.27 35.24 58.46 36.83 97.81 59.76 36.83 20.38

Coffee Machine 93.05 49.39 97.22 95.71 51.09 91.48 56.89 95.74 95.56 59.01 15.40
Desk Lamp ✓ 93.42 54.97 94.74 98.62 57.54 90.56 58.33 92.45 97.95 61.35 13.14
Floor Lamp ✓ 54.88 34.01 93.98 58.39 38.49 52.17 35.74 93.04 56.07 40.20 26.00

Fridge ✓ 88.88 47.76 100.00 88.88 50.46 90.69 52.72 100.00 90.69 56.14 17.74
Garbage Can 77.83 50.76 96.27 80.85 52.16 73.91 50.66 95.88 77.08 52.22 18.90

Kettle 93.75 61.50 100.00 93.75 68.28 92.86 60.76 100.00 92.86 68.37 18.68
Laptop 84.82 48.96 94.55 89.71 52.77 77.71 49.27 92.00 84.47 50.98 14.53

Light Switch 86.43 52.59 97.58 88.57 58.76 81.36 54.65 97.63 83.34 56.47 16.35
Microwave 96.49 55.64 100.00 96.49 53.92 95.00 60.81 100.00 95.00 59.28 12.63

Pan 47.17 28.02 92.45 51.02 33.74 43.18 27.44 90.91 47.49 31.14 24.73
Plate 79.63 44.63 100.00 79.63 42.83 72.97 41.59 100.00 72.97 43.30 17.37
Pot 50.98 30.94 90.19 56.52 37.68 32.26 83.87 83.87 38.45 24.63 30.88

Remote Control 78.29 46.25 93.02 83.34 49.90 72.09 45.68 90.69 79.49 47.72 17.01
Sink 89.00 48.63 94.86 93.66 49.30 78.27 54.22 91.03 85.98 55.62 12.79

Stove Burner 95.93 64.36 100.00 95.93 68.16 93.24 67.24 100.00 93.24 65.99 10.47
Television 80.70 45.69 98.24 82.14 47.80 74.07 47.84 97.53 75.94 49.92 14.28

Toaster 88.09 51.17 100.00 88.09 55.95 87.88 54.67 100.00 87.88 58.18 15.31
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Figure 9. We analyze the SR, SPL, SSR, and SNE metrics for each object. Target objects that have greatly improved after utilizing our
DAT method are shown by name in red. Target objects whose performance suffers because of applying our method are shown by name in
blue.

Table 12. We compare the improvement after using our DAT method in different scenes. Bold values indicate the scene that benefit the
most.

Scene Method
ALL (%) L ≥ 5 (%) Episode

Length↓SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑ SR↑ SPL↑ SSR↑ NSR↑ NSNPL↑

Living Room
DOA 69.15 38.14 95.88 72.12 39.35 61.81 37.45 94.76 65.22 38.31 23.024
DAT 72.54 42.32 95.80 75.72 44.76 66.91 43.26 94.49 70.81 44.81 20.726

DAT - DOA 3.39 4.18 -0.08 3.60 5.41 5.10 5.81 -0.27 5.59 6.50 -2.298

Kitchen
DOA 83.89 49.30 98.78 84.82 52.41 78.76 50.96 98.34 79.94 51.72 16.817
DAT 86.01 52.31 98.68 87.16 53.53 82.47 54.49 98.34 83.86 53.85 16.453

DAT - DOA 2.12 3.01 0.10 2.34 1.12 3.71 3.53 0.00 3.92 2.13 -0.364

Bedroom
DOA 62.10 34.51 93.60 66.35 38.17 51.17 31.92 91.31 56.04 33.73 24.418
DAT 73.10 41.81 95.20 76.79 44.81 63.20 40.11 93.37 67.69 41.96 21.05

DAT - DOA 11.00 7.30 1.60 10.44 6.64 12.03 8.19 2.06 11.65 8.23 -3.368

Bathroom
DOA 87.10 45.64 95.00 91.47 48.94 78.72 48.54 92.84 84.80 51.80 13.848
DAT 88.90 50.34 95.10 93.48 50.98 81.12 54.49 93.04 87.19 55.03 13.582

DAT - DOA 1.80 4.70 0.10 2.01 2.04 2.40 5.95 0.20 2.39 3.23 -0.266
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Figure 10. Visualization of navigation trajectories on the RoboTHOR dataset. The pink arrow indicates the path of the “search for” phase.
The red arrow indicates the path of the “navigate to” phase when only search thinking is used. The blue arrow indicates the path of the
“navigate to” phase when DAT is used.
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