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Abstract—It is a rather practical but difficult task to find
a specified target object via autonomous exploration based on
natural language descriptions in an unstructured environment.
Since the human-annotated data is expensive to gather for the
goal-oriented vision-language navigation (GVLN) task, the size
of the standard dataset is inadequate, which has significantly
limited the accuracy of previous techniques. In this work, we aim
to improve the robustness and generalization of the navigator by
dynamically providing high-quality pseudo-instructions using a
proposed RES-StS paradigm. Specifically, we establish a referring
expression speaker (RES) to predict descriptive instructions for
the given path to the goal object. Based on an environment-and-
object fusion (EOF) module, RES derives spatial representations
from the input trajectories, which are subsequently encoded by a
number of transformer layers. Additionally, given that the quality
of the pseudo labels is important for data augmentation while
the limited dataset may also hinder RES learning, we propose to
equip RES with a more effective generation ability by using the
self-training approach. A trajectory-instruction matching scorer
(TIMS) network based on contrastive learning is proposed to
selectively use rehearsal of prior knowledge. Finally, all network
modules in the system are integrated by suggesting a multi-stage
training strategy, allowing them to assist one another and thus
enhance performance on the GVLN task. Experimental results
demonstrate the effectiveness of our approach. Compared with
the SOTA methods, our method improves SR, SPL, and RGS by
4.72%, 2.55%, and 3.45% respectively, on the REVERIE dataset,
and 4.58%, 3.75% and 3.14% respectively, on the SOON dataset.

Index Terms—Goal-oriented Vision-Language Navigation, Self-
training, Referring Expression Generation, Contrastive learning

I. INTRODUCTION

As the instruction based on the referring expression like
“Please go to my office and bring me the document on the
table” are usually used in social conversations in our daily life,
it is fundamental for embodied Al agents to have such a capa-
bility to accurately pursue the guidance and discern the goal
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Fig. 1. Our method consists of three networks in total: a speaker, a scorer, and
a navigation agent. We propose a RES-StS approach to generate high-quality
pseudo labels for boosting the generalization and robustness of the navigation
agent during training, where RES serves as a referring expression generation
model, and self-training with TIMS is used to ensure the effectiveness of
RES. Based on a multi-stage training strategy, these models jointly promote
the performance of the GVLN task.

object in perceptually-rich environments. The Goal-oriented
Vision-Language Navigation (GVLN) setups in real environ-
ments [1, 2] take such a step toward this goal. Compared
with the Vision-and-Language Navigation (VLN) task [3]] that
focuses on building a model capable of following fine-grained
instructions, the GVLN task is more practical and constructive
since fine-grained instructions are actually difficult to access
in real life; thus the GVLN task has driven increased interest
from various research fields. Although numerous methods have
been explored to use visual and language clues to assist in
goal navigation [1} 2| |4-7], the severe overfitting problem
caused by the small dataset with monotonous environments
still remains challenging. This problem will become prominent
when the network scale significantly increases, resulting in
weak generalization.

Since manually annotating instructions costs a lot, it is a
potential direction to build an inverse model to dynamically
generate instructions according to the easily obtained trajecto-
ries so that the dataset can be extended by in-domain pseudo
pairs. The speaker-based model [8, 9] is such a potent method
to serve as data augmentation in the VLN task. This inspires
us to introduce the speaker to the GVLN task. However, since
the speaker in the VLN task only needs to describe the actions
for each step, it is different from the GVLN task that requires
generating goal-oriented instructions. Therefore, the problem
arises as to how to build a speaker model that can predict the
referring expression with a description of the appearance,
location, and surroundings of the target according to the
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given trajectory.

To address the above problem, we propose a referring
expression speaker (RES) in this work, which is able to capture
representations of visual trajectories with the goal object and
predict descriptive natural language instructions. Specifically,
we enrich the visual inputs by adding the object feature
comprised of its visual features, position, and label derived
by the trained object feature extractor. To fuse the abundant
features and at the same time reduce unnecessary redundancy,
we design an environment-and-object fusion (EOF) module.
The EOF promotes the cross-fusion in the spatial domain by
assigning the key and the query with different types of features
based on the multi-head attention mechanism [10]. The goal
object feature is concatenated with the trajectory features
as an individual token to encourage the model to focus on
the specific target representation. Moreover, motivated by the
huge success made by the transformer with stronger long-term
extraction ability, we choose the encoder-decoder transformer
as the core of our network. Additionally, considering that the
object category and the room type are two specific key points
for the GVLN task, we develop a new metric named Hit Rate
(HR) to assess the quality of generated instructions by de-
termining the correct proportion of the dominant information
present in the predicted instructions.

It should be highlighted that the speaker’s performance is
important because ineffective instruction creation might lead
to poor navigational supervision. Although the speaker was
primarily designed to produce pseudo labels for expanding the
standard dataset, its limited scope may also make it difficult to
train the speaker itself. Thus, another question follows: how to
expand the knowledge of the speaker model beyond what it
can acquire via supervised learning on the limited dataset?

We suggest employing semi-supervised learning (SSL) [L1-
13] to improve training performance in order to get over this
restriction. We train our RES model using the self-training
framework [14416]), which first trains a teacher model on
labeled data, predicts pseudo labels on unlabeled data, and then
retrains a student model on the merged labeled and pseudo
data. Next, even if SSL yields synthesize referring expression
contexts via text prediction, there may still be noise due to the
irrelevant description of the target object or incorrect localiza-
tion to given trajectories. Therefore, we propose a trajectory-
instruction matching scorer (TIMS) to utilize pseudo labels of
high quality in a selective manner. TIMS is built based on the
contrastive dual-encoder structure [17], which independently
takes the completed trajectory and the instruction as inputs and
computes the match similarity between these two modalities.
We determine a data-driven threshold 7 based on the average
scores of positive pairs to filter out the low-quality pseudo
labels. To justify the effectiveness of TIMS, we define a
Matching Success Rate (MSR) to calculate the percentage of
accurate matching predictions, and the model with the highest
MSR will be chosen. We name the method of training RES
via self-training with the scorer RES-StS.

As illustrated in Fig. [} our approach involves a total of
three networks: RES, TIMS, and the navigation agent (NA).
Specifically, we choose two recent state-of-the-art models
HAMT [6] and DUET [7]] as the frameworks of our NA

through experiments to verify the effectiveness of our proposed
method. It is essential to reconcile these models properly for
the goal of navigation and localization in the GVLN task. To
this end, a multi-stage training strategy with four stages is
proposed to integrate the whole training procedure. First, we
train a teacher RES and TIMS on the small labeled dataset.
Then, a large amount of unlabeled data with high-quality
pseudo labels is predicted by the teacher RES based on the
selection of TIMS. The mixed dataset is further used to retrain
a student RES model and pre-train a NA model using several
auxiliary tasks. Finally, we use the trained RES to dynamically
replicate unseen environments with associated instructions for
fine-tuning the NA model based on the back-translation with
the environment dropout method [9]]. The experimental results
on the REVERIE [[1]] and the SOON [2] datasets demonstrate
that our proposed method can significantly improve the per-
formance in the GVLN task. In summary, the contributions of
our work are as follows:

o We explore a RES-StS method for generating high-quality
pseudo labels on sampled trajectories with goal objects
to promote the generalization for the GVLN task.

e We propose an encoder-decoder referring expression
speaker (RES) model to fully utilize the sequential visual
navigation information and predict descriptive instruc-
tions. The self-training with a trajectory-instruction match
scorer (TIMS) approach is introduced to enhance the
performance of RES.

o We present a multi-stage training strategy to integrate
the training process of the RES, TIMS, and navigating
agent (NA). The experimental results demonstrate that
our method achieves new state-of-the-art results on both
REVERIE and SOON datasets.

II. RELATED WORK

A. Data Augmentation in VLN and GVLN

In contrast to the Vision-Language Navigation (VLN) [3}
18-23]] that asks for the navigation based on the fine-grained
instructions, the recent Goal-oriented Vision-Language Nav-
igation (GVLN) task [1, [2] focuses on enabling an agent
to search for an instance under the guidance of the target
sketch and is considered to be more practical in real life.
Some works [2, 14, 16, [7] propose to leverage the memory
clue by representing the topological maps or using recurrent
units to support global route planning. SIA [24] solves the
where and what problem through understanding high-level
instructions. However, the VLN and GVLN tasks’ dataset sizes
are both small as a result of the simulation environment’s
specialization, which causes a severe overfitting problem.

In the VLN task, some attempts have been undertaken for
data augmentation. For example, the speaker [8, 25, 26] is
developed as an inverse model to construct pseudo instructions
in accordance with the trajectory presented. Some methods
are suggested to imitate more environments through random
dropout of features [9], GAN-generated images [27)], and
random environmental mixup [28]. CITL [29] enhances the
trajectories and instructions to improve the model’s capacity

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on June 22,2023 at 03:28:56 UTC from IEEE Xplore. Restrictions apply.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3233554

for representation. AirBERT [22] and VLN-BERT [30] im-
prove the performance by collecting a large number of image-
text pairs from the website. Among the above methods, the
speaker framework has been most frequently used due to its
plug-and-play features. Overall, it is convenient to construct a
speaker model to extend the dataset with in-domain pseudo
labels. However, all of the existing VLN speaker models
are unable to effectively handle goal-oriented instructions.
First, the speaker models in VLN only take into account the
image features as inputs and completely disregard the object-
level information, which is indeed the distinction between the
GVLN and VLN. Additionally, most of the previous speaker
models adopt the LSTM-based structure to encode and decode
instruction words, which makes it difficult to understand the
long-term dependence of the entire vision-based trajectory.
Therefore, we propose a stronger referring expression speaker
(RES) baseline that adapts to the GVLN task. Different from
the existing speaker in VLN that can only generate instructions
based on step-by-step actions, our RES can fully fuse the
sequential environment and object features and describe the
goal object in detail. Additionally, we suggest a multi-stage
training procedure in which we first train the speaker under
a self-training manner with the supervision of the proposed
TIMS model, and then apply the speaker in different stages to
provide static and dynamic data augmentation for NA.

B. Self-training

Recently, self-training has shown its power in main research
domains, such as image feature extraction [31} [32], image
content understanding [11, 33| [34], and natural language
processing [[16, 35]]. The core of the self-training is to first
train a teacher model based on the small labeled dataset, and
then use the teacher model to generate pseudo labels on a
large number of the unlabeled dataset so that it can be used
to retrain a student model. Zoph et al. [15] investigate that
self-training can improve performance upon pre-training in
some practical cases. Furthermore, considering the generation
noise by the predicted pseudo labels might mislead the training
process and hurt the learning behavior [36], some methods
attempt to ensure the reliability of the pseudo labels via the
adversarial framework [37] and the action curriculum pseudo
labeling [38]. Some methods also use label smoothing [39] or
confidence regularization [40] to improve the generalization
of the self-training. In this work, we propose to improve the
generalization of the RES through the self-training strategy by
utilizing the easy-obtained sampled trajectories. In addition,
we also design an individual scoring network based on the
contrastive loss to filter the imprecise pseudo labels.

C. Contrastive Learning

Contrastive Learning [41-43] has shown promising results
on cross-modal learning. The basic purpose of contrastive
loss is to promote representations to be close for similar
samples and distant for dissimilar ones. Some recent works
design the network based on contrastive learning to explore the
alignment between two types of features [44-46]]. Specifically,
Huang et al. [41] propose a LSTM-based discriminator and

some artificial altering strategies to mine negative paths for
analyzing the effective proportion of augmented data. Zhao et
al. [44]] discover the typical metrics are insufficient to evaluate
grounded path instructions and use the LSTM structure to
build a compatibility model based on the contrastive loss
and classification loss. Inspired by their works, we build a
novel TIMS model in GVLN to filter the low-quality pseudo-
data pairs by calculating the trajectory-instruction similarity
score. Following the operations of the recent popular CLIP
model [[17], we take the transformer encoder [10] structure
as the backbone and construct positive and negative pairs in
the batch. To equip the TIMS with the capacity to recognize
the target object, we employ the proposed EOF-module to
encode the visual representations. An attention mechanism is
also implemented to effectively integrate the dual features into
acceptable dimensions so that we can project them to the space
where the symmetric cross-entropy loss is applied.

III. PROBLEM BACKGROUND

Simulator and Environment Settings. Based on the Mat-
terport3D simulator [47], the environment is denoted as a
connected graph G = {P,&}, where P and £ represent
navigable nodes and connectivity edges, separately. Formally,
the simulator provides the navigable nodes and their panorama
composed of 36 images V = {v;}3%,. There are two types of
information to be used to represent the visual observations:
environment features F and object features O. At each time,
the agent can choose one of the adjacent candidates from
the current node and navigate to the chosen direction. Then
the agent will update its observed surrounding environment
features.

Navigation Agent (NA). The GVLN navigation agent aims
to autonomously explore an unstructured environment, relying
only on vision, and navigate to the location of the target item
indicated by the instructions and point out the location of the
target object. Specifically, the goal can be divided into two sub-
tasks: navigation and localization. The navigation is considered
to be completed if the last position a7 in the predicted action
sequences A = {aq,as,...,ar} close to the target (<3m). The
localization is considered to be successful if the agent locates
[2]] or chooses [1] the goal object correctly. The probability of
NA prediction can be formulated as P4 (aq,...,an|I, E,0) =
Hfil Pyl(ailas,...,a;—1,1, E;, O;), where a;, I, E;, O; denote
the i-th action prediction, instruction, environment features,
and object features, respectively.

To solve this challenging task, the base agent leverages
cross-modality attention modules for aligning instructions,
visual environments, and objects. The encoder-decoder struc-
ture is used to model context history and predict actions
in each step. The projection head is adopted to point out
the target object at the end of the navigation. In this paper,
we choose two recent models HAMT [6] and DUET [7] as
our NA frameworks. HAMT encodes the trajectory using a
hierarchical vision transformer and considers the relationships
in time across historical panoramas. DUET suggests a dual-
scale graph transformer for action planning and cross-modal
understanding.
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Fig. 2. Illustration of EOF. The fusion of environment features and object
features is proposed to equip the model with a stronger ability to perceive
and discern the navigation trajectory and the target goal.

Speaker. The speaker serves as an inverse model to the NA,
which predicts a set of words I = {wy,ws, ..., wr,} where w;
means the [-th word in the sentence of length L, to describe
the trajectory and annotate sampled data with pseudo-labels.
Therefore, the inputs and outputs of the speaker are opposite to
those of NA. How to build such a model to effectively encode
the long-horizon environment and object representations for
the GVLN task remains an open problem. The probability of
word prediction can be written as Ps(wy,...,wr|A, E,0) =
Hle Ps(wj|ws, ...,wj—1, A, E,O), where w; denotes the j-
th word in the instruction.

IV. REFERRING EXPRESSION SPEAKER

In this section, we construct RES to dynamically provide
goal-oriented instructions using the wealth of visual trajectory
cues. The overview architecture of RES is illustrated in Fig. [3]
In the spatial domain, we design an EOF module to incorporate
panoramic and oriented environment and object features so
that the model can leverage global and local information
simultaneously. In the temporal domain, we adopt the encoder-
decoder transformer as the core of our network to capture
sequential features in the long-term distance.

A. Environment-and-Object Fusion (EOF)

As shown in Fig. 2] the EOF module is proposed to facil-
itate the model to utilize decisive information about nearby
environments from different prospects. The difficulty lies in
figuring out how to adequately combine the various inputs
and eliminate the extraneous elements because the visual
components are largely redundant.

First, to supplement the dominating oriented image E! €
RN *de and equip the model with the ability to understand the
global and local environment features, we explore employing
the panoramic images EP € RN*36%de The environment
features E = {V;~} include visual features V and offset
angles ~ to depict the spatial relationships between each
patch image. Specifically, the offset orientation follows v =
(sin 6, cos 6, sin ¢, cos ¢), where 6 and ¢ denote the heading
and elevation direction, respectively. By designating E* as the
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Fig. 3. Illustration of RES. Combined with EOF and transformer architecture,
it shows a strong ability for goal-oriented instruction generation. PE denotes
the sine and cosine position embedding function.

query and E? as the key and value, we adopt the multi-head
attention mechanism (MHA) from [[10], which is formulated
as Equation (I)-(3), to fuse the global environments based on
local-oriented observation:

. QK
Attention(Q, K, V') = softmax
@K, V) e

head; = Attention(Q,,, W/, K,, W}, V,,W?) )

MHA(Qpm,, K, Vi) = Concat(heady, ..., head,)Wpx  (3)

where Q,,, € REaxde [, e RLsXdx and V,, € Rivxdv
are queries, keys and values, respectively. L,, Ly and L,
are sequence lengths of inputs. Let di and h denote the
intermediate dimension and the number of heads, respectively.
The projections are parameters matrices W, € R@*d
Wk € Rdxxde o ¢ RIV>de and Wy € RrXdm  where
d,, means the dimension of model.

The diversity of features is further enriched by adding object
features O € RV*MXdo \where M denotes the number of
objects of each viewpoint so that the model can use a more
thorough visual expression. The regular object visual features
f, object position p, and bounding box b are adopted to
represent the object. We additionally combine the label [ with
the aforementioned three categories of features since the label
holds the semantic information of the item, which is crucial
for comprehending the goal object. Concretely, we provide
the categories numerical indices and encode them with an
embedding layer,

0= @(f) + By(p) + B(b) + (Tde(D)) (&)
where ® means the linear transformation and Idx denotes
the quantification process of labels. The object features are
then blended with the fused environment features using a new
multi-head attention module. The raised fusion step realizes
the effective aggregation of the input trajectory features. The
target object’s information at the destination is essential and
shouldn’t be disrupted by other environmental circumstances
on the way since it directly contributes to the purpose of
referring to expression. To this end, we fuse the trajectory
features in parallel with the target object features O" € R%.
The full fusion process of EOF is formulated as follows:

WV (D

S, = MHA(EPW? E'W*, E'W*) (5)
Sy = MHA(S;W*,0W°, 0W®) (6)
O =0"W"+b" (7)

5! = Concat(Ss, 0") (8)

where W and b are learnable parameters to project the input
features to network hidden space. S(J; € RWHDxdn i the
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output feature of the EOF.

B. Encoder-Decoder Transformer Network

1) Vision Encoder: Since a trajectory often includes multi-
ple navigation points, the sine and cosine functions PE,,,s [10]
are used to add the position encoding to the input embedding
S¢. Then it is fed to the stacked encoder module composed of
identical layers. The MHA and the position-wise feed-forward
network (FFN) are the two sub-layers that make up each
encoder layer. Specifically, FFN includes two fully-connected
layers with the nonlinear activation in between as follows:

FEN(z) = 8(zW{ + o) yW +b] 9)
where § denotes the ReLU non-linearity and W and b are
learnable parameters. The input and output dimensions are the
same dj, and the dimension of the middle linear layer is twice
the input dimension. The residual connection [48] and layer
normalization [49]] are adopted to increase learning stability.
This design encodes representations about all previous time
steps in addition to the information about the present time
step. The procedure of each encoder layer is expressed as:

S} = LayerNorm(S/_, + MHA(S/_,, S/ .5/ ) (10)

S{ = LayerNorm(FFN(S}) + S/) (11)
2) Linguistic Decoder: The structure of the decoder is
basically the same as the encoder, except for the addition of
a shifting mask to the supervised sentences to ensure each
predicted word depends only on the previous ones, and the
insertion of another sub-layer that performs attention over
the output of the encoder. Supposed Iy denotes the word
embeddings and S{ means the output of the vision encoder,
the procedure of each decoder layer can be formulated as:

I = LayerNorm(I;_; + MHA(I;_1, I,_1,[;_1))  (12)
f[ = LayerNorm(flf + MHA(I?, s?.s!)) (13)
I; = LayerNorm(FEN(I}') + I7) (14)

After several stacked decoder layers, the output features I;
are projected to a d,-dimensional space, where d,, is the
vocabulary size. The softmax function is used to predict the
probability of the next word:

p(we) = softmazx(ILW"™ 4 b™) (15)

where W € R%n*dw and d € R% are learnable parameters.

3) Supervised Loss: Let 6 and w* denote the network

parameters and the ground-truth word, respectively. The cross-

entropy function used as the objective for the RES is formu-
lated as Equatign (16):

£ == log(fo(w]|wi,_1, EP, E,0,07))  (16)
=1

V. SELF-TRAINING APPROACH

Although RES is intended to enrich data pairs and alleviate
the overfitting problem for the NA caused by the small dataset,
the training of RES itself may experience the same issue.
Therefore, we propose to use the self-training method to
eliminate the limitation of small data sets on RES. To the
best of our knowledge, we are the first to investigate self-
training for the speaker. Furthermore, for improving the quality

Score

Y
A EOF |j

<BOS> <EOS>
Instruction Encoder

Fig. 4. Illustration of TIMS. A dual-encoder structure is used to individually
encode the trajectory and instruction features and determine their similarity
score at the end through projection heads.

of pseudo labels, we propose TIMS, which is detailed in
Sec. to determine how similar trajectories and projected
instructions are in order to eliminate the low-quality pseudo
labels. The overall algorithm of self-training with TIMS for
RES is given in Sec. [V-B|

A. Trajectory-Instruction Matching Scorer (TIMS)

In this section, we propose a dual-encoder structure model
to encode the trajectory 7" and its associated natural language
instruction I separately. The cosine similarity score of the two
modalities is determined by a single dot product in the learned
joint embedding space, and they are only permitted to interact
at the top of the network. The illustration of TIMS is shown
in Fig. @] Motivated by the setup in CLIP [I7], we train our
TIMS to predict which of the B x B possible (1,]) pairings
across a batch actually occurred, where B denotes the batch
size. Thus, it is convenient to obtain both B positive pairs and
B? — B negative pairs.

1) Instruction Encoder: A lightweight and fast DistilBERT
model [S0] is first applied to encode the words in the in-
struction I = {w;}£ ;. Then the key problem lies in how to
effectively represent the high-level semantic content of instruc-
tion embeddings. We propose to use a transformer encoder
module to strengthen sentence representation and adapt the
text embeddings to the dataset at hand. This differs from
the previous methods that directly take the first [CLS] token
in [4] or apply BLSTM to the last hidden layer in [41} 44].
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Fig. 5. Overview of the proposed multi-stage training strategy composed of four stages in total. In stage 1, we train the RES and TIMS on the labeled
dataset. In stage 2, we use the teacher RES to generate pseudo labels on the sampled unlabeled dataset and filter the low-quality predictions through the
trained TIMS. Then the mixed dataset is used to retrain the student RES and train the NA following the pre-training procedure. Finally, we use the trained

RES-StS to fine-tune the NA based on the back-translation method.

We discover that since the trained BERT already includes
the position encoding of the inputs, it is unnecessary to add
another position encoding to the hidden representations. Let
H € REX768 denote the output predicted by the transformer
encoder layers. Additionally, we further introduce an attention
mechanism [S1]] to weighted sum the embeddings since self-
attention is unable to lower the length of the sequence:

M = tanh(H) (17

a = softmax(MW™) (18)

h* = tanh(a” H) (19)

where W™ € R% 1 is a trained parameter and h* € R'*9 is

an aggregated representation of natural language instructions.

2) Trajectory Encoder: The trajectory encoder in TIMS is
built in a manner reminiscent of the RES encoder construction
described in Sec We employ EOF specifically to fully
merge the object features with global and local environmental
features. Since EOF mainly focuses on the spatial domain
of the visual inputs, we further adopt a transformer encoder
module to strengthen the connections within the temporal
domain. Additionally, an attention mechanism in Equation
(I7)-(19) is applied to abbreviate the length of trajectory
features because one path typically involves several navigable
nodes. This can make it easier to achieve the representations
of the two modalities through the dot product.

3) Projection Head: To map the features to the comparison
space, a projection head is defined in Equation (20):
G(x) = LayerNorm(X + W3 (c(W{ X))) (20)
where W and WY are learnable parameters, and o denotes
the GELU non-linearity. X is used to present features output
by one of the encoders. The residual connection and the layer-
norm function are adopted to stable the network’s forward and
backward propagation. The projection heads are independently
applied at the top of the two branches. We use I¢ and T°
to denote the final representations of the instruction and the
trajectory, respectively.

4) Contrastive Loss: The objective of TIMS is to maximize
the similarity scores between positive pairs, which can be

constructed as:

oo LA el T/
2B j=1 Zk 1 exp(< ) /t) 21
S exp<<fz,Tz>/t)

55 ko8 =7 e e
2B k=1 Z]‘:l exp((Ij,TkVt)
where B and (-, -) denote the batch size and the inner prod-
uct, respectively. ¢ represents the temperature parameter [52].

B. Self-training with TIMS

Self-training is a practical approach to incorporating un-
labeled data into supervised learning, which has three main
steps [14} [16]: 1) train a teacher model on the small labeled
dataset, 2) generate pseudo labels using the teacher model
on a large amount of unlabeled dataset, 3) train a student
model on the mixed dataset. Inspired by this, we propose
to generate pseudo-labels for training NA models while also
using these pseudo-data pairs to further enhance RES based
on self-training. Additionally, the proposed TIMS is used to
select the appropriate pseudo labels generated by the rough
teacher model f;. Assumed the output similarity of the TIMS
is fo((I,T)), the loss function of the student model f5s can be
expressed as:

L3 =—‘1’(f5( i) o)) (fe((F(Th), 7)) (22)

where 7 = 47 M i=1fc({I;,T;)) represents the data-driven
threshold calculated by M positive labeled samples, ¥ denotes
the cross entropy function, and 7; means the ¢-th trajectory
features with augmentation. The function I, equals 1 if the
similarity of the trajectory-instruction pair is greater than T,
otherwise equals 0. Overall, the completed loss for RES is
formulated in Equation (23):

[RES

=L+ L0 (23)

VI. MULTI-STAGE TRAINING STRATEGY

Our method consists of three networks in total: a speaker,
a scorer, and a navigation agent. As shown in Fig. 5] we
propose a multi-stage training strategy to synchronize the
entire training process. This is different from previous VLN
methods [4} 53] using speaker only in their pre-training stage
since their speaker keeps consistent all the time. As we intro-
duce the self-training strategy for RES, the teacher and student
RES inherently can generate different pseudo labels during
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different stages, which can further boost the generalization
ability of NA. Let D! and D* denote labeled and unlabeled
dataset, respectively. The process is as follows:

o Stage 1: Train teacher RES and TIMS on D!, separately.
Specifically, RES seeks to learn how to generate descrip-
tive text based on a given trajectory and target, and TIMS
learns how to compute the similarity scores of trajectory-
text pairings and provide greater matching values to the
positive ones.

« Stage 2: Use RES to generate pseudo instructions I, on
D" that includes a large number of sampled trajectories
without annotations. While the standard metrics of natural
language generation cannot be applied without ground
truth labels, our TIMS can dynamically calculate similar-
ity scores between data pairs and pick out high-quality
pseudo labels. The two datasets are then combined as
D* =D!JD"

o Stage 3: Apply D” to retrain RES and pre-train NA. For
a fair comparison, we completed the pre-training of NA
with the same auxiliary task losses as previous methods
did. HAMT adopts the masked language model (MLM),
masked region classification (MRC), single-step action
prediction (SAP), instruction trajectory matching (ITM),
and Spatial Relationship Prediction (SPREL) as auxiliary
tasks, while DUET uses the first three tasks with another
object grounding (OG) for pre-training. For simplicity,
we refer to the pretraining loss of NA as £P.

o Stage 4: Fine-tune NA to achieve the specific goal of
the task at hand. RES-StS is used to further expand the
available in-domain data pairs based on the environment
dropout approach [9]. By sharing dropout locations across
RES and NA, it is able to enrich the variety of environ-
ments and instructions that NA can contact during fine-
tuning. Similarly, we use the same loss type as previous
NA models except for the utilization of additional pseudo
data pairs. The main distinction between applying RES
during pre-training and fine-tuning is that the former can
be viewed as a static augmentation process when using
the mixed dataset, whereas the latter can be viewed as a
dynamic augmentation procedure since the random envi-
ronment dropout is developed during each iteration. This
strengthens the NA model’s robustness and generalization
by enabling it to interact with various augmented data in
the two stages. The pseudocode of the fine-tuning process
of NA with the RES is present in Algorithm

VII. EXPERIMENTS

A. Experimental Setup

1) Dataset: We evaluate our methods on REVERIE [1] and
SOON |[2] datasets for GVLN. REVERIE contains 10,466 in-
structions over 2,353 objects in the training split. The training
split of SOON contains 3,085 sets of instructions with 28,015
trajectories over 38 houses. We use the sampled navigation
paths provided by PREVALENT [53]] as unlabeled data, and
randomly select one object at the endpoint as the target goal.

Algorithm 1 The fine-tuning process of NA with RES

Input: Labeled dataset D! = {(I}, A1)}V, unlabeled dataset
D" = {Ay}},, trained RES model f.
Output: Navigation agent f,.
while not reach the maximum iteration do
2:  Sample a batch of items from D! and D¥;
for I' € D} do
4 Al = fa (IZ);
end for
6: for A* € Dy do
A" = Augment(A");
8 1= f(A");
Av = fa(lu);
10:  end for
Update f, to minimize £' of {(AL, ALy}
and £ of {(A*, A")};
12: end while
return f,.

In total, we can generate about 665,206 additional instruction-
trajectory pairs. After using TIMS to filter the low-quality
generation, the number of pseudo labels is about 241,693. We
follow the setup in [7] that uses an object detector [54] to
obtain candidate object boxes and convert object grounding
settings in SOON similar to the settings in REVERIE.

2) Implementation details: For RES, We use 3 transformer
encoder layers and 3 decoder layers with 4 heads, and the
dimension of each head is 64. The dimension of hidden layers
is 512. The batch size is 64. For TIMS, the numbers of
transformer encoder layers for two encoders are both 1 with
4 attention heads. The dimensions of the hidden layers and
the batch size are 256 and 8, respectively. The temperature
parameter is set to 1 during training. The Adam is used to
optimize with a learning rate of 5e-5 for 80,000 iterations,
both for training RES and TIMS. The weights of student
RES are initialized based on the teacher model. We keep the
learning rate and the total number of iterations the same for
training the teacher and student RES. For a fair comparison,
the training details and the features of the images and objects
remain the same as in HAMT and DUET. On a single Tesla
V100, the time to reach saturation for RES, TIMS, RES-StS
and generate augmented data is around 3 h, 9 h, 11 h, and 8 h,
respectively. During fine-tuning, the average time of generating
pseudo labels with the dynamic environment dropout is about
0.23 s for each batch of 8. Overall, since the configuration
of NA training keeps unchanged, our method will train for
around 1.6 days longer than original methods.

B. Evaluation Metrics

1) Instruction Generation Metrics: we adopt standard met-
rics of natural language generation tasks to evaluate the
performance of instruction generation, including BLEU [57],
ROUGE [38], CIDEr [39] and SPICE [60]. Additionally, a
new metric Hit Rate (HR) is proposed to determine how
well a speaker can capture the object category and room
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TABLE I

COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE REVERIE DATASET.

Val Seen Val Unseen Test Unseen
Methods Navigation Grounding Navigation Grounding Navigation Grounding

OSR SR SPL RGS RGSPL| OSR SR SPL RGS RGSPL| OSR SR SPL RGS RGSPL
Seq2Seq [3) 3570 2959 2401 1897 1496 | 8.07 420 2.84 216 163 | 6.88 399 3.09 200 1.58
RCM [55] 2944 2333 21.82 1623 1536 | 1423 929 697 489 389 |11.68 784 6.67 3.67 3.14
SMNA [56] 4329 4125 39.61 30.07 2898 |11.28 8.15 644 454 361 | 839 580 453 310 239
FAST-MATTN [1] | 55.17 50.53 4550 3197 29.66 |2820 1440 7.19 7.84 4.67 |30.63 19.88 11.61 11.28 6.08
SIA [24] 65.85 6191 57.08 4596 42.65 | 44.67 31.53 1628 2241 11.56 | 4456 30.80 14.85 19.02 9.20
RecBERT [4] 5390 41.79 4796 3823 35.61 |35.02 30.67 2490 18.77 15.27 | 3291 29.61 2399 16.50 13.51
Airbert [22] 4898 47.01 4234 3275 30.01 | 3451 27.89 21.88 18.23 14.18 | 3420 30.28 23.61 16.83 13.28
HOP [35] 54.88 47.19 13.80 38.65 33.85 |36.24 26.11 1646 18.85 15.73 | 33.06 24.34 1638 17.69 14.34
HAMT [6] 47.65 4329 40.19 2720 25.18 | 36.84 3295 3020 18.92 17.28 | 33.41 3040 26.67 14.88 13.08
HAMT 60.65 58.54 56.01 42.66 40.70 | 37.09 34.25 30.31 20.48 18.09 | 3948 37.38 32.65 20.07 17.50

w/ RES-StS (Ours)|(+13.00) (+15.25) (+15.82) (+15.46) (+15.52)|(+0.25) (+1.90) (+0.11) (+1.56) (+0.81) |(+6.02) (+6.98) (+5.98) (+5.19) (+4.42)
DUET [7] 73.86 7175 63.94 5741 51.14 | 51.07 4698 33.73 32.15 23.03 | 5691 52.51 36.06 31.88 22.06
DUET 7850 7540 67.13 62.08 55.39 | 55.01 48.85 33.07 33.17 2233 | 6241 57.23 38.61 35.33 23.64

w/ RES-StS (Ours)| (+4.64) (+3.65) (+3.19) (+4.67) (+4.25) |(+3.94) (+1.87) (-0.66) (+1.02) (-0.70) | (+5.5) (+4.72) (+2.55) (+3.45) (+1.58)

type compared to the ground truth annotation. The HR is
formulated in Equation (24),

LLCS(M;(4:), Mi(yi;)))
L(Mi(yij))

LLCS(My(9:), My (yi5)))
L(M:(yis))

HitRate(g;,y;) = A
(24

:
s

where LLC'S denotes the length of the longest common subset
between two sets and L means the length of the phrase. M;
and M, represent the expressions of the room type and the
goal object, respectively. Here we use the NLTK toolkit [61]]
to extract the specific contents from sentences. ¢; and y;;
mean the prediction results output by the speaker and the j-
th ground truth annotation of the i-th trajectory, respectively,
since each path is usually associated with several labeled
instructions. A is used to balance the proportion of two types
of expression and the results reported in this paper are all
for the case where A = 0.5. Additionally, we also use the
Object Hit Rate (OHR) metric to count the proportion of the
correct mentioned objects on the unlabeled dataset, which is
formulated as OHR = + va:l I(M¢(g:), 0:), where o; means
the label of the assigned object for the i-th sampled path and
I equals 1 if two phrases are consistent, otherwise equals O.

2) Scorer Metrics: We define a Matching Success Rate
(MSR) metric to evaluate the performance of the scorer during
training. The formulation of MSR is shown in Equation (25)),
where B and N denote the batch size and the number of mini-
batches in a set, respectively. I, equals 1 if the prediction is
correct, otherwise equals 0. The MSR can reflect the average
proportion of the correct matched pairs predicted by the scorer
to the total positive data pairs in every mini-batch.

N B
MSR‘;;E slargmas(o(Tig 1)) 9

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE SOON
DATASET.

Split Method | OSR SR SPL RGSPL
Val GBE [2] 2854 1952 1334 116
Unseen|  PUET [ 5091 3628 2258 3.75

DUET 5292 4018 2630 529
w/ RES-StS (Ours) | (+2.01) (+3.90) (+3.72) (+1.54)
Test GBE [2] 2145 1290 923 045
Unseen|  PUET [0 4300 3344 2142 417
DUET 48.07 38.02 2517 731
w/ RES-StS (Ours) | (+5.07) (+4.58) (+3.75) (+3.14)

3) Goal-oriented Navigation Metrics: Following [1, 2], we
use the standard metrics to measure navigation and object
grounding performance, including Trajectory Success Rate
(SR), Oracle SR (OSR), SR penalized by Path Length (SPL),
Remote Grounding Success (RGS), and RGS penalized by
Path Length (RGSPL). All indicators are the higher the better.

C. Compared to state-of-the-art results

1) REVERIE: Table [I| compares our method with state-of-
the-art models on the REVERIE dataset. The results demon-
strate that our method is beneficial for improving the per-
formance of navigating agent models and greatly beats the
state-of-the-art on all evaluation metrics. For instance, in the
test unseen split, SPL and RGSPL are greater than HAMT
at 5.98% and 4.42%, and higher than DUET at 2.55% and
1.58%, respectively. The improvement is consistently observed
on other metrics as well. Moreover, using RES-StS to expand
the training set has also significantly improved the results in
the seen environments, achieving improvements in SR, SPL,
and RGSPL of 15.25%, 15.82%, and 15.52%, respectively. In
addition, we also observe that there is a large improvement
gap between the val-unseen split and the test-unseen split. We
hypothesize that the stark disparity in data distribution between
the two subsets is to blame. Above all, the experimental results
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Fig. 6. Learning curves for multiple evaluation metrics for RES on seen and unseen validation splits. It shows that there is a serious overfitting problem when
RES is trained on the original REVERIE dataset, resulting in a sharp drop in the metrics on the validation set after a certain number of iterations. When the
self-training method is used, this problem is greatly alleviated, and most of the evaluation metrics show a continuous upward trend.

TABLE III
COMPARISON OF DIFFERENT FEATURE COMPONENTS ON THE REVERIE
UNSEEN VALIDATION SPLIT. THE ”OI”, ”PI”, ”SO”, AND "GO” STAND
FOR ORIENTED IMAGES, PANORAMIC IMAGES, SURROUNDING OBJECTS,
AND THE GOAL OBJECT, RESPECTIVELY.

Id|OI PI SO GO|B@! B@4 ROUGE CIDEr SPICE| HR
1| v 0526 0.195 0455 0339 0.174 | 0.447
2|V v 0.541 0219 0451 0400 0.190 |0.526
3|v v v 0541 0226 0458 0431 0201 |0511
4|v v v 0585 0278 0511 0739 0241 [0.681
50v v v v 059 0294 0515 0766 0.244 | 0.705

indicate that our approach can unleash the enormous potential
of the previous NA models, raising the learning ceiling for the
available dataset.

2) SOON: Since the number of annotated instructions pro-
vided by the SOON dataset is much lower than that provided
by REVERIE, and the instructions contain more detailed
content, the model tends to encounter greater challenges
in learning. Nevertheless, the experimental results shown in
Table [MI] prove that using our RES-StS method for data aug-
mentation can effectively improve the model’s generalization
ability, achieving a new state-of-the-art threshold. In the test
unseen split, we successfully improve the previous best model
DUET [7] by 5.07% on OSR, 4.58% on SR, 3.75% on SPL,
and 3.14% on RGSPL. This reveals that data augmentation is
crucial for the data-driven deep learning models, and our RES-
StS contributes significantly to the NA models by offering
appropriate pseudo labels for the different datasets in the
GVLN task.

D. Quantitative Analysis

1) Effect of different feature components: As described in
Sec.[I[V-A] we use four types of features to enrich the trajectory
representations: panoramic images EP, oriented images E?,
surrounding objects O, and the goal object O". EOF is
proposed to fuse these complicated features effectively. We
explore the importance of the above features contributing to
our RES and the result is shown in Table [[IIl It demonstrates
that panoramic images and surrounding objects can effectively

TABLE IV
COMPARISON OF SELF-TRAINING WITH AND WITHOUT TIMS FOR RES.

\ Method \B@l B@4 ROUGE CIDEr SPICE\ HR
=| RES ]0.692 0402 0.613 1435 0.359 |0.866
ﬁ RES-St [0.698 0.414 0.615 1.490 0.363 |0.863

RES-StS [ 0.700 0.415 0.620 1.491 0.365 | 0.869
5| RES [0.596 0.294 0.515 0.766 0.244 |0.705
§ RES-St [0.598 0.300 0.520 0.803 0.249 |0.700
2 | RES-StS | 0.606 0.302 0.523 0.812 0.251 | 0.713

TABLE V
ABLATION OF LABEL FEATURE FOR RES.

| Method | B@1 B@4 ROUGE CIDEr SPICE| HR
§ w/o label | 0.688 0.395 0.603  1.351 0.349 |0.831
» | w/ label | 0.692 0.402 0.613 1.435 0.359 | 0.866
§ w/o label | 0.594 0.288 0.515 0.744 0.235 | 0.694
;é; w/ label | 0.596 0.294 0.515 0.766 0.244 | 0.705

endow global observations with local representations, improv-
ing CIDEr by 0.061 and 0.092, respectively. The goal object
information can significantly improve the performance (the
CIDEr and HR are increased from 0.431 to 0.766 and from
0.511 to 0.705, respectively) by administering the necessary
clues to the model. The reasonable fusion method allows the
obtained path features to contain richer linguistic, semantic,
and dominant information, providing a solid basis for the
construction of RES and TIMS models.

2) Effect of self-training for RES: Table [[V] shows that
the self-training approach can improve most metrics in both
seen and unseen environments. However, the presence of
some noise in the generated pseudo labels affects the model’s
learning of the key information representation, resulting in
some decrease in HR values in both environments (HR 0.866
vs. 0.863 on the seen split). This problem was solved when
we introduced TIMS to filter low-quality pseudo data pairs
before retraining, which validates our conjecture that TIMS
can effectively alleviate undesirable noise in the process of
generating pseudo labels and avoid its misleading relearning
of the student model. As a result, RES-StS outperforms RES
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TABLE VI
ABLATIONS OF THE DIFFERENT COMPONENTS OF TIMS.

Id | Method | MSR on Val Seen | MSR on Val Unseen
1 [CLS] 90.2 84.4
2 BLSTM 95.0 87.2
3 | Transformer 95.7 90.4
4 Mean 954 87.6
5 Attn 95.7 90.4
6 PFE; 94.0 90.0
7 PE; 93.1 86.7
8 w/o PE 95.7 90.4
TABLE VII

ABLATION OF RES AND STS FOR NAVIGATION PERFORMANCE ON THE
REVERIE UNSEEN VALIDATION SET.

RGSPL

14.70
14.91
18.29
23.03
22.52
22.33

Stage |RES StS|OSR SR SPL RGS

X 35.44 32.55 22.73 21.76
37.09 33.88 23.06 21.78
42.23 38.71 27.21 26.16
51.07 46.98 33.73 32.15
54.70 47.57 32.66 32.89
55.01 48.85 33.07 33.17

X

Pre-train

v X
v v
X X
Fine-tune| v* X
v v

in all metrics. To more visually demonstrate the difference
between the training effects of the teacher model and the
student model, we visualize the learning curves in Fig. [6] It is
clear that without self-training, the teacher model has a serious
overfitting issue that prevents it from simultaneously reaching
the highest checkpoint for the majority of the metrics. After
introducing the self-training method with TIMS to retrain a
student model, the overfitting is greatly alleviated and most of
the indicators are consistently increasing and surpassing the
teacher model.

3) Effect of the label on the goal object: As the labels of the
objects contain essential semantic information, we compare the
effect of adding the label embeddings [ into the object features
in Table [V] It demonstrates that all measures significantly
improve with the addition of label features, indicating that
direct semantic information may make it simpler for the model
to comprehend objects.

4) Effect of the compositions of TIMS: Since the repre-
sentation of trajectory features has been carefully designed
in EOF, we mainly explore how to represent the high-level
semantic information of the instruction. From Table VI we
can obtain that: (1) The #1 — #3 rows compare the dif-
ferent methods for representing the semantic information of
sentences embedded by the trained BERT model. It shows
that adding additional encoding modules can capture the
semantic features better than directly using a single [CLS]
token. Specifically, the Transformer encoder can provide a
stronger representation ability than the BLSTM does. (2) The
#4 — #5 rows compare the different aggregation approaches.
The attention mechanism can emphasize the important content
more accurately compared to meaning pooling. (3) The #6 —
#8 rows explore whether to add another position encoding
after using the trained BERT to extract text embeddings. PF,
and PE; denote the sine and cosine functions [[10]] and learned
positional embeddings [62]], respectively. It represents that it is

10

B@4 ROUGE CIDEr
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Fig. 7. Tllustration of the effect of using TIMS to filter the pseudo labels on
the unseen set. OHR_aug means the object hit rate on the augmented data.

unnecessary to add another position encoding since the trained
BERT model has already considered the order of the sequence.
5) Effect of using TIMS to filter low-quality predictions:
We further verify that whether the TIMS model can meet our
requirement to filter out some predictions of low quality based
on the trajectories and instructions. As shown in Fig. [7] all
metrics on the unseen validation split obtain obvious improve-
ment after applying TIMS to filter the predictions below the
threshold. For the essential object and location information,
HR increases from 0.713 to 0.759. In addition, we also track
the hit rate of objects on our augmented dataset (OHR_aug),
which shows an improvement from 0.888 to 0.937. It is evident
that our method can capture most of the essential information
for GVLN, and TIMS has the capacity to filter out a large
number of noisy pseudo labels.

® Ground Truth: Open the cabinet under the sink in the bathroom
with a dark brown bathtub.

® RES-StS Prediction: Go to the bathroom with the large mirror
and open the cabinet under the sink.

\L' Y o

® Ground Truth: Go to the porch with the couch a
wash the pillow on the couch.

® RES-StS Prediction: Go to the porch with the white chairs and
bring me the pillow on the couch.

d table and

Fig. 8. Qualitative examples of predicted instructions compared with the
ground truth. It shows that RES-StS can capture the correct key points in the
instructions (shown in blue) with appropriate descriptions (shown in purple).

6) Promoting effect of RES-StS on NA: We compare the
power of using RES with and without the TIMS-filtering self-
training approach to promoting the navigation and localiza-
tion ability of NA in Table [VII We chose DUET as our
experimental subject. Specifically, when both RES and StS are
crossed, it indicates the original training method; when RES is
ticked and StS is crossed, it represents the data augmentation
using RES without self-training; when both RES and StS are
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Target Chair Target Ceiling duct Target Step Target Chair

Go to the dining room with
the large round table and

Go to the family room on

Go to the hallway with the level 2 and pull out the

Go to the hallway with the

RES . RES pictures of a man and clean RES blue (wrong color) walls RES .
pull out the chair closest to . — chair closest to the entrance
; the TV (wrong object). and clean the bottom step. —
the piano. (wrong location).
TIMS 1.2(>1) TIMS 09 (< 1) TIMS 09 (< 1) TIMS 1.2 (> 7) (wrong score)
(a) (b) (©) (d)

Fig. 9. Visualization of some success and failure cases on the sampled trajectories. For each example, the target object, the pseudo labels predicted by
RES, and the score (divided by 7) determined by TIMS are represented in the bottom tables. The words marked in purple mean the wrong content with the
explanation marked in red. Specifically, (a) presents a successful case that both RES and TIMS predict correctly. (b) and (c) show that RES outputs incorrect
contents while TIMS successfully filter them out. (d) is the case that TIMS fails to identify the wrong pseudo instruction.
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i

1
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]

i

0.00 - : i

120 140 160 180 200
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Fig. 11. Tllustration of the distribution of the similarity values of positive and

ti i dicted by TIMS.
Fig. 10. Comparison of predicted trajectories of ours and the state-of-the-art negative paifs predicted by S

DUET [7]. The left green boxes show the chosen object at the end of the
navigation. o . ) )
description can be generated beyond what is designated in the

ground-truth sentences, which shows that our RES-StS has

ticked, it means that the adopted RES has been retrained by learned how to comprehend visual observations effectively.
the TIMS-based self-training method. The results reveal that As for the top trajectory in Fig. [8] the predicted instruction
using RES can effectively improve the robustness of the model uses the phrase “with a large mirror” to describe the bath-
in both the pre-training (SR 33.88 vs. 32.55) and fine-tuning room, which is not represented in the ground-truth annotation.
stages (SR 47.57 vs. 46.98). The effect of data augmentation However, a large mirror is in fact hang on the wall in the
will be further strengthened when we utilize a stronger RES  third image, demonstrating the accuracy of our prediction.
after TIMS-filtering self-training, significantly improving the Therefore, using RES-StS can achieve the goal of expanding
performance of the original NA model. the dataset by generating more instructions with different
descriptions, which is beneficial to data-driven model learning.

E. Qualitive Analysis 2) Visualization and analysis of some failure cases: In
1) Referring expression generation: In Fig. [8] we show addition to visualizing some successful examples, we also
some visualization examples of the predicted instructions of track some failure cases to analyze the limitation of our
the trajectories on the REVERIE dataset. Specifically, the models in the hope of inspiring future work. In Fig. [0 it
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shows that although our speaker is capable of describing the
objective with visual features, e.g., (a) successfully captures
the large round table through the path and the piano around
the chair, it may nevertheless forecast incorrect contents in
some circumstances. For example, (b) shows that the RES
mistakenly outputs the ceiling duct to the TV, and in (c),
it recognizes the brown wall as the blue one. Fortunately,
our TIMS can dynamically identify and remove these errors.
The reason for this difference is that the captioning task is
much harder than the classification task, and sometimes the
grounded object with a similar appearance may confuse the
model. However, there are some cases that RES and TIMS
are still unable to solve. In (d), the descriptive location of the
chair is ambiguous since we can see there are other chairs
that are closer to the entrance.

Overall, we think the absence of some detailed semantic
information and relative spatial coordinates between objects
may contribute to the above problems. Some recent image cap-
tioning works that consider the relative relationship between
objects 63, 164]] could possibly overcome this shortcoming and
should be further explored in future works.

3) Navigation trajectory: A visualized example of pre-
dicted trajectories and the ground truth path is shown in
Fig. For the instruction “In the bathroom check if the
sink is filled with water”, it is demonstrated that our model
succeeds in completing the objective where the original DUET
model fails. This implies that data augmentation during train-
ing enhances the model’s combined capacity to navigate and
localize by enabling it to view a greater variety of targets and
learn how to find them in the scene.

4) Distribution of similarity values of positive and negative
pairs: In Fig. we visualize the distribution of similarity
values of positive and negative pairs predicted by TIMS. As
described in Sec. we use the average similarity value of
positive examples as the threshold 7 for filtering low-quality
generated pseudo data pairs. Experimental results show that
although the total number of available samples is decreased,
the self-training for RES is more effective since the noisy
generation is eliminated. Statistics show that just 1.3% of
negative example pairings have similarity values above this
threshold, demonstrating the reliability of using TIMS to
choose the generated natural language instructions that are
appropriate for the path and the goal object.

VIII. CONCLUSION

We propose a RES-StS approach for generating high-quality
pseudo labels on the sampled unlabeled data to address the
challenge caused by the small dataset in the GVLN task.
A referring expression speaker (RES) model is designed to
predict goal-oriented natural language descriptions. To en-
able the model to effectively process the sequential visual
observations, we present EOF to fuse four types of inputs
and adopt the transformer architecture as the core of our
encoder-decoder network. We propose to use a self-training
strategy for improving the performance of RES so that a large
number of unlabeled trajectories that are easy to sample can
be fully utilized. Considering the potential disturbance caused

by the rough generation instructions, we present TIMS with a
dual-encoder structure to filter the pseudo labels to diminish
the noise. Finally, we summarize the whole training process
for RES, TIMS, and the navigating agent as a multi-stage
training strategy. Experimental results verify the effectiveness
of our proposed components and demonstrate that our method
can significantly unleash the potential of previous methods,
achieving state-of-the-art performance on GVLN benchmarks
REVERIE and SOON.

We believe that our approach has good expansibility and
robustness and can also serve other VLN-like tasks as well.
Nevertheless, since the addition of individual networks would
require extra training time, further investigation needs to
further investigate on how to build such a system in an end-
to-end manner with higher efficiency.
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